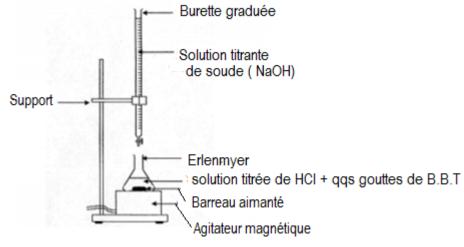
L.S	F.	Η	bou	arado
Nliv		2è	me	+00

T.P: Chimie A.S: 16 / 17


Détermination d'une quantité de matière à partir d'une réaction chimique : Dosage acido-basique

I/	Objectif:
	Définition :
III,	/ Expérimentation :

1-Dispositif expérimental et Mode opératoire:

- Remplir la burette avec la solution titrante(solution aqueuse de soude de concentration C_B = 0,1 mol. L^{-1}) et ajuster le volume de solution titrante au zéro de la graduation
- Verser dans un erlenmeyer un volume V_A = 20 mL de la solution à titrer. (solution aqueuse d'acide chlorhydrique de concentration molaire inconnue C_A
- Ajouter un barreau aimanté.
- Ajouter 3 gouttes de l'indicateur coloré.(B.B.T)
- Placer une feuille de papier blanc sous le bécher contenant la solution à titrer pour mieux visualiser le changement de couleur.

2-Principe:

•	Avant le	dosage i	la solution	acide est	de couleur	·
---	----------	----------	-------------	-----------	------------	---

- Arrêter le dosage et noter le volumede la solution basique ajoutée à l'équivalence $oldsymbol{V}_{BE}$
- V_{BE} =.....

3-	D	ésu	ı	tat	•
J-	_	ヒコロ	"	ıuı	

• Equation de la réactiondu titrage	e:		

Définition de l'état d'équivalence :
$ullet$ Détermination de la concentration \mathcal{C}_{A} :
VI/ Evaluation :
Etude d'un détergent ménager contenant de la soude
Les déboucheurs d'évier sont des produits ménagers qui contiennent de l'hydroxyde de sodium à l'état solide ou en solution aqueuse concentrée
Pour déterminer la concentration molaire de soude dans un déboucheur liquide nous le dosant par l'acide chlorhydrique
On mélange 10 mL de la solution commerciale du déboucheur avec suffisamment d'eau pour obtenir 50 mL de solution dilué (S_1) (dilution). On dose 20 mL de cette solution (S_1) par une solution d'acide chlorhydrique de concentration molaire égale à 0,15 mol.L ⁻¹ .L'équivalence est obtenue pour V_{AE} = 16 mL 1) Quel est le réactif titrant et le réactif titré?
2) Ecrire l'équation chimique de la réaction de dosage
3) Déterminer la concentration molaire C_B de la solution (S_1)
4) En déduire la concentration molaire C_B initial de la solution commerciale
5) En déduire la masse m de soude dissoute dans un litre de déboucheur (on donne M_{NaOH} = 40 g.m t^1)

