Exercice 1

Soit la suite (U_n) définie par :

$$\begin{cases} U_0 = 1\\ U_{n+1} = \frac{3U_n + 4}{U_n + 3} \text{ pour tout } n \in \mathbb{N} \end{cases}$$

- 1) Montrer par récurrence que pour tout $n \in \mathbb{N}$ on $a : 0 \le U_n \le 2$
- 2) $a Montrer que (U_n)$ est une suite croissante. $b - En déduire que (U_n)est convergente et calculer sa limite$
- 3) soit (V_n) la suite définie sur \mathbb{N} par : $V_n = \frac{U_n - 2}{U_n + 2}$
 - a- Montrer que (V_n) est une suite géométrique de raison $q = \frac{1}{2}$
 - b- Exprimer (V_n) puis (U_n) a l'aide n
 - c- Retrouver alors la limite de la suite (U_n)

Exercice 2

 $\begin{cases} U_0 = 3\\ U_{n+1} = 4(\frac{U_n - 1}{U_n}) \text{ pour tout } n \in \mathbb{N} \end{cases}$

- 4) Montrer par récurrence que pour tout $n \in \mathbb{N}$ on $a : U_n \ge 2$
- 5) a) Montrer que :

$$U_{n+1} - U_n = -\frac{(U_n - 2)^2}{U_n}$$

b) En déduire que (U_n) est convergente et calculer sa limite

6) soit (V_n) la suite définie sur \mathbb{N} par :

$$V_n = \frac{1}{U_n - 2}$$

a)Montrer que (V_n) est une suite arithmétique de raison $q = \frac{1}{2}$

b) Exprimer (V_n) puis (U_n) a l'aide n

c)Retrouver alors la limite de la suite (U_n)

Exercice 3

On considère la suite (u_n) définie par $\begin{cases} u_0 = 0\\ u_{n+1} = \frac{6 - u_n}{4 - u_n}; \text{ pour tout } n \in \mathbb{N}. \end{cases}$

1) a) Montrer par récurrence que pour tout $n \in \mathbb{N}$; on a $u_n \prec 2$. b) Montrer que pour tout $n \in \mathbb{N}$; $u_{n+1} - u_n = \frac{(u_n - 2)(u_n - 3)}{4 - u}$.

c) Montrer alors que la suite (u_n) est croissante.

- d) Déduire que (u_n) est convergente.
- 2) Soit la suite (v_n) définie sur \mathbb{N} par : $v_n = \frac{2u_n 6}{u_n 2}$.
 - a) Montrer que (v_n) est une suite géométrique de raison 2.
 - b) Exprimer v_n en fonction de n.
 - c) Déduire que, pour tout $n \in \mathbb{N}$, $u_n = \frac{6\left[1 \left(\frac{1}{2}\right)^n\right]}{3 2\left(\frac{1}{2}\right)^n}$.
 - d) Calculer alors lim u,.

Exercice 3

Soit la fonction *f* définie sur]1; +∞[par $f(x) = 2 + \frac{1}{2\sqrt{x-1}}$.

- 1) a/Etudier les variations de f.
 - b/Montrer que pour tout $x \in [2;3], f(x) \in [2;3]$.
 - c/Montrer que pour tout $x \in [2;3]$, on $a |f'(x)| \le \frac{1}{4}$.
- 2) a/Montrer que l'équation f(x) = x admet une solution unique α dans]1; +∞[et vérifier que α ∈]2; 3[.
 b/Montrer que (α 2)²(α 1) = ¹/₄.
- 3) Soit la suite (u_n) définie par $\begin{cases} u_0 = 2\\ u_{n+1} 2 = \frac{1}{2\sqrt{u_n 1}}\\ a/Montrer que pour tout <math>n \in IN, \ 2 \le u_n \le 3. \end{cases}$
 - b/Montrer que pour tout $\in IN$, $|u_{n+1} \alpha| \le \frac{1}{4}|u_n \alpha|$.
 - c/En déduire que pour tout $n \in IN$, $|u_n \alpha| \le (\frac{1}{4})^n$.

 $d/Déduire \lim_{n\to-\infty} u_n$.

Exercice 4

On considère les suites (U_n) et (V_n) définies par : U₀ = $\frac{1}{2}$ et V₀ = $\frac{7}{2}$

et pour tout $n \in \mathbb{N}$, $U_{n+1} = \frac{5U_n + V_n}{6}$, $V_{n+1} = \frac{U_n + 5V_n}{6}$.

- 1) Pour tout $n \in \mathbb{N}$ on pose $X_n = V_n U_n$.
 - a-Montrer que (Xn) est une suite géométrique dont on précisera la raison.
 - b-Exprimer (X_n) en fonction de n, en déduire que pour tout $n \in \mathbb{N}$, $U_n \leq V_n$.
- 2) a- Etudier la monotonie de chacune des suites (U_n) et (V_n) .
 - b-Prouver alors que les suites (U_n) et (V_n) convergent vers la même limite L.
- 3) Pour tout $n \in \mathbb{N}$ on pose $Y_n = V_n + U_n$.
 - a- Montrer que (Y_n) est suite constante.
 - b- Déterminer alors L.

