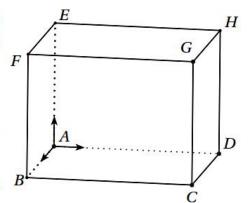
Exercice 1

L'espace \mathscr{E} est rapporté à un repère orthonormé direct $(A; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$ et ABCDEFGH est un parallélépipède tel que $\overrightarrow{AB} = 2\overrightarrow{i}$, $\overrightarrow{AD} = 4\overrightarrow{j}$ et $\overrightarrow{AE} = 3\overrightarrow{k}$.



- 1. (a) Vérifier que $\overrightarrow{AG} = 2\overrightarrow{i} + 4\overrightarrow{j} + 3\overrightarrow{k}$.
 - (b) Déterminer les composantes de chacun des vecteurs \overrightarrow{EB} ; \overrightarrow{EG} et $\overrightarrow{EB} \wedge \overrightarrow{EG}$.
 - (c) Déterminer une équation cartésienne du plan (EBG).
- 2. Soit α un réel différent de 1 et M le point des coordonnées $(2\alpha, 4\alpha, 3\alpha)$.
 - (a) Vérifier que *M* décrit la droite (*AG*) privée du point *G*.
 - (b) Montrer que M n'appartient pas au plan (EBG).
- 3. Soit \mathcal{V} le volume du tétraèdre MEBG.
 - (a) Exprimer \mathcal{V} en fonction de α .
 - (b) Calculer le volume du tétraèdre AEBG.
 - (c) Pour quelles valeurs de α $\mathcal V$ est-il égal au volume du parallélépipède ABCDEFGH?

Exercice 2

L'epace \mathscr{E} est rapporté à un repère orthonormé $(O; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$. On donne les points A(-2,2,8), B(6,6,0), C(2,-1,0) et D(0,1,-1).

On note (S) l'ensemble des points M de l'espace tels que $\overrightarrow{MA}.\overrightarrow{MB} = 0$.

- 1. (a) Calculer les composantes du vecteur $\overrightarrow{OC} \wedge \overrightarrow{OD}$.
 - (b) En déduire une équation cartésienne du plan (OCD).
- 2. Montrer que (S) est une sphère donner les cordonnées du point I centre de (S) et le rayon de (S).
- 3. (a) Calculer la distance de I à P. En déduire la position de (S) et (OCD).
 - (b) Calculer $\overrightarrow{OA}.\overrightarrow{OB}$. En déduire $(S) \cap (OCD)$.

Exercice 3

L'espace est muni d'un repère orthonormé direct $(o, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$. On donne les points A(2, -3, -1), B(1, 0, 2) et C(0, 1, 3).

- 1. a) Montrer que les points $A,\,B$ et C ne sont pas alignés .
 - b) Écrire une équation cartésienne du plan P passant par les points $A,\,B$ et C
- 2. Pour tout réel t de l'intervalle $[-\pi, \pi]$, on considère l'ensemble S_t des points M(x, y, z) vérifiant l'équation : $x^2 + y^2 + z^2 2tx 2ysint + 2z + t^2 + sin^2t 1 = 0$. Montrer que S_t est une sphère dont on précisera le centre et le rayon.
- 3. a) Étudier suivant les valeurs de t, l'intersection de la sphère S_t et du plan P.
 - b) Dans le cas où le plan P est tangent à la sphère S_t , déterminer les coordonnées du point de contact.

Exercice 3

Dans l'espace muni d'un repère orthonormé direct $(0, \vec{1}, \vec{j}, \vec{k})$. On considère les points A(2,-1,1), B(-1,1,-1) et C(1,2,0).

- 1) a) Déterminer les composantes du vecteur $\overrightarrow{AB} \wedge \overrightarrow{AC}$.
 - b) En déduire que A,B et C ne sont pas alignés.
 - c) Calculer l'aire du triangle ABC.
- 2) Soit P le plan d'équation : 2x + 2y 5z 4 = 0. Soit Δ la droite d'équations cartésiennes : $\frac{x-2}{2} = \frac{y+1}{-2} = z 1$.
 - a) déterminer l'intersection de P et Δ .
 - b) Vérifier que la droite (BC) est incluse dans P et que Δ passe par le point A.
- 3) Soit le point D(-2,3,-1).
 - a) Montrer que A,B,C et D ne sont pas coplanaires.
 - b) Calculer le volume du tétraèdre ABCD.
- 4) Déterminer l'ensemble des points M de l'espace tel que $(\overline{DM} \overline{AM}) \wedge \overline{BM} = 0$.

Exercice 4

Soit ABCDEFGH un cube d'arête 1.On munit l'espace d'un repère orthonormé direct $(A, \overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AE})$. Soit I=B*F et J tel que $\overrightarrow{EJ} = \frac{2}{3} \overrightarrow{EH}$.

- 1) a) Déterminer les coordonnées des points I et J et du vecteur $\overrightarrow{AI} \wedge \overrightarrow{AJ}$.
 - b) Montrer que l'aire du triangle AIJ est $\frac{\sqrt{14}}{3}$.
- Montrer que le volume du tétraèdre AIJE est ¹/₉ puis déduire la distance du point E au plan AIJ.
- 3) Montrer qu'une équation cartésienne du plan (AIJ) est x + 3y 2z = 0. Calculer la distance de E au plan AIJ.
- 4) Soit S l'ensemble des points M(x, y, z) tel que $x^2 + y^2 + z^2 2x 2z 2 = 0$.
 - a) Montrer que S est une sphère dont on précisera le centre et le rayon.
 - b) Montrer que S et (AIJ) sont sécants suivants un cercle que l'on précisera.
- 5) Déterminer les plans qui sont parallèles au plan (AIJ) et tangents à S et déterminer les coordonnées de leurs points de contact.

Exercice 5

ABCDEFGH est un cube d'arête 1. Soient les points I,J et K tels que I=B*C ; J=A*E ;K=D*C

On munit l'espace d'un repère orthonormé direct $(A, \overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AE})$.

- 1) a) Vérifier que I a pour coordonnées $(1, \frac{1}{2}, 0)$ et K a pour coordonnées $(\frac{1}{2}, 1, 0)$.
 - b) Déterminer les composantes de $\overrightarrow{GI} \wedge \overrightarrow{GK}$.
 - c) Calculer alors le volume V de tétraèdre JGKI.
- 2) a) Montrer que le plan (GIK) a pour équation 2x + 2y z 3 = 0.
 - b) Montrer que (CJ): $\begin{cases} x = 1 2\alpha \\ y = 1 2\alpha \ \alpha \in IR. \\ z = \alpha \end{cases}$
- 3) La droite (CJ) coupe le plan (GIK) en H'.
 - a) Vérifier que la droite (CJ) est perpendiculaire au plan (GIK).
 - b) Déterminer les 2 points de (CJ) dont la distance au plan (GIK) est égale à 1.

