L.S.REGUEB

📗 🛮 - <u>Devoir de contrôle N°1</u> - 🗈

2016/2017

EPREUVE: SCIENCES-PHYSIQUES

SECTION: 4 SC-Inf

Proposé par: Slimi Ridha

CHIMIE:(5 pts)

On se propose de déterminer la concentration C_1 d'une solution de sulfate de **fer II (Fe SO**₄) notée (S_1).

Pour cela on dose un volume $V_1 = 20 \text{mL}$ de (S_1) par une solution aqueuse (S_2) de permanganate de potassium $(KMnO_4)$, acidifiée et de concentration molaire $C_2 = 3,5.10^{-3}$ mol.L⁻¹.

L'équivalence est obtenue par l'addition d'un volume V_2 éq = 17,5.10-3 L de la solution (S_2).

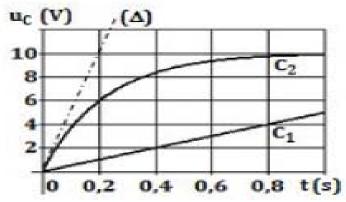
- 1)-a- Écrire les équations formelles associées aux couples redox Fe^{3+}/Fe^{2+} et $Mn O_4^-/Mn^{2+}$, mis en jeu dans cette réaction du dosage.
- b- Ecrire l'équation simplifiée de la réaction du dosage.
- c-Citer les caractères de la réaction d'oxydoréduction entre les ions Fe²⁺ et les ions Mn O₄.
- 2)-a- Ce dosage redox est appelé manganimétrique. Justifier.
- -b- Quelle est la solution dosant et la solution à doser.
- -c- Comment peut-on détecter l'équivalence expérimentalement ?
- 3) Etablir la relation entre C_2 , $V_{2\acute{e}q}$, V_1 et C_1 . En déduire la valeur de C_1 .
- 4) Déterminer la masse m de sulfate de fer II nécessaire pour préparer 500mL de la solution (S).

<u>Données</u>: $M(Fe) = 56 \text{ g.mol}^{-1}$; $M(S) = 32 \text{ g.mol}^{-1}$; $O(G) = 16 \text{ g.mol}^{-1}$.

<u>PHYSIQUE : (15 pts)</u> EXERCICE N°1 : (8 pts)

On se propose de déterminer par deux activités expérimentales différentes, la capacité **C** d'un condensateur initialement déchargé.

- **Première activité** : on charge le condensateur à travers un conducteur ohmique de résistance $R = 425 \Omega$ à l'aide d'un générateur débitant un courant d'intensité constante $I_0 = 235. \ 10^{-5} A$;
- **Deuxième activité** : on décharge le condensateur, puis, on le recharge à l'aide d'un générateur délivrant une tension continue constante.



On relève pour chaque activité et à différents instants, la valeur de la tension $\mathbf{u}_{\mathbb{C}}$ aux bornes du condensateur et on trace les courbes (\mathbf{C}_{1}) et (\mathbf{C}_{2}) de la figure <u>ci-avant</u>.

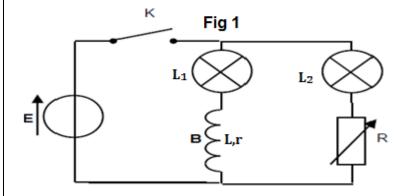
- 1) Détermination de la valeur de la capacité C à partir de la courbe $\{C_1\}$:
- a) Associer à la courbe (C_1) , le générateur correspondant.
- b) Déterminer l'équation mathématique vérifiant la courbe (C₁).
- c) Déterminer la valeur de la capacité C, en sachant qu'en courant continu, l'intensité I du courant vérifie la relation : $I = C \frac{\Delta u_c}{\Delta t}$

2) Détermination de la valeur de la capacité C à partir de la courbe (C2):

- a) Schématiser le circuit électrique permettant de tracer la courbe (C_2) .
- b) Etablir la relation de proportionnalité entre l'intensité $\mathbf{i(t)}$ et $\frac{du_c}{dt}$. En déduire que l'intensité du courant est nulle en régime permanent.
- c) Etablir l'équation différentielle vérifiée par la tension $\mathbf{u}_{C}(\mathbf{t})$ aux bornes du condensateur.
- d) Vérifier que $\mathbf{u}_{C}(\mathbf{t}) = \mathbf{E}(\mathbf{1} \mathbf{e}^{-t/RC})$ est une solution de l'équation différentielle.
- e) En déduire que la même équation différentielle s'écrit sous la forme : $\frac{du_R}{dt} + \frac{1}{RC} u_R = 0$
- 3) Déterminer graphiquement :
- la valeur de E.
- la constante de temps τ .
- -Préciser ce que représente la constante de temps τ.
- Retrouver la valeur de la capacité **C**.
- 4) Quelle est la réponse du dipôle RC à l'échelon de tension utilisé.
- 5) Calculer l'énergie **E**_C emmagasiné dans le condensateur à la fin de la charge.
- 6)-a- Etablir l'expression de $\mathbf{u}_{\mathbf{R}}$ en fonction de \mathbf{t} , $\boldsymbol{\tau}$ et \mathbf{E} .
- -b- En déduire l'expression de l'intensité **i(t)** du courant de charge.
- -c- Tracer l'allure du chronogramme de **i(t)** tout en y précisant les valeurs que prend l'intensité **i** respectivement à la fermeture de l'interrupteur **K** et lorsque le condensateur devient complètement chargé.

EXERCICE N°2: (7 pts)

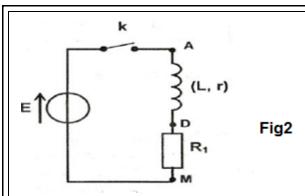
I/ On dispose d'un générateur de tension f.e.m: E, de deux lampes L_1 et L_2 identiques, d'une bobine B d'inductance L et de résistance r, d'un conducteur ohmique de résistance variable R et d'un interrupteur K. Les différents dipôles sont associés comme le montre le schéma de la **figure-1-**



On ajuste la valeur de la résistance R du conducteur ohmique de façon à la rendre égale à celle de la bobine B. A la fermeture de l'interrupteur K, on constate que la lampe L_1 atteint son éclat maximal en retard par rapport à la lampe L_2 .

- 1) Préciser la cause de ce retard et le phénomène mis en évidence.
- 2) Prévoir ce qu'on peut observer, au niveau des deux lampes une fois que le régime permanent s'établit. Justifier
- 3) Préciser si la lampe L_1 atteint son éclat maximal en retard par rapport à la lampe L_2 , lorsqu'on ferme le circuit de la **figure1** dans lequel le conducteur ohmique est remplacé par une bobine identique à la bobine B. Justifier la réponse.
- II/ Avec un générateur de tension de force électromotrice E, une bobine d'inductance L et de résistance interne r, un conducteur ohmique de résistance R_1 et un interrupteur K, on réalise le montage de la figure -2- page 3/3.

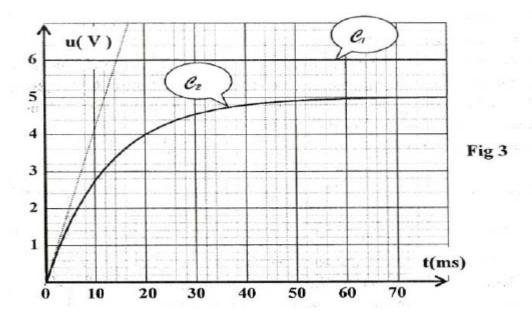
A l'instant **t=0**, on ferme le circuit



- 1)-a- Montrer que l'équation différentielle vérifiée par l'intensité i(t) du courant qui circule dans le circuit est de la forme : $\frac{di}{dt} + \frac{1}{\tau}i = \frac{E}{L} \text{ avec } \tau = \frac{L}{R_1 + r}$
- -b- Vérifier que i(t)= A (1- $e^{-t/\tau}$) est solution de cette équation différentielle pour A= $\frac{E}{r+R_1}$
- -C- Déterminer , de deux manières différentes, l'expression de l'intensité I_0 du courant qui circule dans le circuit en régime permanent.
- -d- En déduire la valeur de la tension aux bornes de la bobine juste à la fermeture du circuit.
- 2) Un oscilloscope permet de visualiser, simultanément l'évolution des tensions $\mathbf{u}_{AM}(\mathbf{t})$ aux bornes du générateur et $\mathbf{u}_{DM}(\mathbf{t})$ aux bornes du conducteur ohmique. L'évolution des tensions $\mathbf{u}_{AM}(\mathbf{t})$ et $\mathbf{u}_{DM}(\mathbf{t})$ est données par les chronogrammes \mathcal{C}_1 et \mathcal{C}_2 de la **figure 3**.

Par exploitation des chronogrammes de la figure 3:

- -a- montrer que le chronogramme \mathcal{C}_2 correspond à $\mathbf{u}_{DM}(\mathbf{t})$.
- -b- déterminer la valeur de la constante de temps τ du dipôle RL.
- -c- Calculer la valeur de l'intensité I_0 du courant qui circule dans le circuit en régime permanent, sachant que R_1 = 40Ω .
- -d- déterminer la valeur de la tension aux bornes de la bobine aux instants t_1 = 20ms et t_2 = 70ms.
- -e- calculer la valeur de la résistance **r** et celle de l'inductance **L** de la bobine.



<u>BON TRAVAIL</u>