Résumé : Produit scalaire – Produit vectoriel dans l'espace

Niveau : Bac sciences expérimentales Réalisé par : Prof. Benjeddou Saber

Email: saberbjd2003@yahoo.fr

<u>Définition</u>: "Repère et base de l'espace"

Soit 0 un point, \vec{i} , \vec{j} et \vec{k} trois vecteurs de l'espace.

- $-(0,\vec{\imath},\vec{\jmath},\vec{k})$ est un repère de l'espace, lorsque $\vec{\imath},\vec{\jmath}$ et \vec{k} ne sont pas coplanaires.
- Le triplet $(\vec{l}, \vec{j}, \vec{k})$ est dit une base de l'ensemble des vecteurs de l'espace.

<u>Définition</u>: "Coordonnées d'un point – Coordonnées d'un vecteur"

Soit $(0, \vec{i}, \vec{j}, \vec{k})$ un repère de l'espace.

- Pour tout point M, il existe trois réels x, y et z tels que : $\overrightarrow{OM} = x\vec{\imath} + y\vec{\jmath} + z\vec{k}$.
 - x, y et z sont **les coordonnées de M** dans le repère $(0, \vec{i}, \vec{j}, \vec{k})$.
 - x est l'abscisse, y est l'ordonnée et z est le cote du point M. On note : M(x, y, z).
- Tout vecteur \vec{u} peut s'écrire : $\vec{u} = a\vec{i} + b\vec{j} + c\vec{k}$ où a, b et c sont des réels.
 - $a, b \text{ et } c \text{ sont les coordonnées de } \vec{u} \text{ dans le repère } (0, \vec{\iota}, \vec{j}, \vec{k}). \text{ On note } : \vec{u} \begin{pmatrix} a \\ b \\ c \end{pmatrix}.$

<u>Propriétés</u>:

Soient $A(x_A, y_A, z_A)$ et $B(x_B, y_B, z_B)$ deux points de l'espace.

$$- \overrightarrow{AB} \begin{pmatrix} x_B - x_A \\ y_B - y_A \\ z_B - z_A \end{pmatrix}$$

- Le milieu du segment [AB] a pour coordonnées : $\left(\frac{x_A + x_B}{2}, \frac{y_A + y_B}{2}, \frac{z_A + z_B}{2}\right)$
- Si le repère est orthonormé, alors : $AB = \sqrt{(x_B x_A)^2 + (y_B y_A)^2 + (z_B z_A)^2}$

<u>Définition</u>: "Vecteurs colinéaires"

Deux vecteurs \vec{u} et \vec{v} de l'espace sont **colinéaires** s'il existe un réel α tel que $\vec{u} = \alpha \vec{v}$.

Théorème:

Professeur: Benjeddou Saber

Deux vecteurs $\vec{u} \begin{pmatrix} a \\ b \\ c \end{pmatrix}$ et $\vec{v} \begin{pmatrix} a' \\ b' \\ c' \end{pmatrix}$ de l'espace sont colinéaires $\iff \begin{vmatrix} a & a' \\ b & b' \end{vmatrix} = \begin{vmatrix} a & a' \\ c & c' \end{vmatrix} = \begin{vmatrix} b & b' \\ c & c' \end{vmatrix} = 0$.

Théorème:

Soient A, B et C trois points de l'espace.

A, B et C sont alignés $\Leftrightarrow \overrightarrow{AB}$ et \overrightarrow{AC} sont colinéaires.

<u>Définition</u>: "Vecteurs coplanaires"

Trois vecteurs \vec{u} , \vec{v} et \vec{w} de l'espace sont **coplanaires** s'il existe deux réels α et β tels que $\vec{u} = \alpha \vec{v} + \beta \vec{w}$.

Théorème:

Trois vecteurs
$$\vec{u} \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
, $\vec{v} \begin{pmatrix} a' \\ b' \\ c' \end{pmatrix}$ et $\vec{w} \begin{pmatrix} a'' \\ b'' \\ c'' \end{pmatrix}$ de l'espace sont coplanaires $\iff det(\vec{u}, \vec{v}, \vec{w}) = 0$.

$$\operatorname{Avec}: \det(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}) = \begin{vmatrix} a & a' & a'' \\ b & b' & b'' \\ c & c' & c'' \end{vmatrix} = a \begin{vmatrix} b' & b'' \\ c' & c'' \end{vmatrix} - a' \begin{vmatrix} b & b'' \\ c & c'' \end{vmatrix} + a'' \begin{vmatrix} b & b' \\ c & c' \end{vmatrix}$$

Théorème:

Soient A, B, C et D quatre points de l'espace.

A, B, C et D sont coplanaires $\iff \overrightarrow{AB}, \overrightarrow{AC}$ et \overrightarrow{AD} sont coplanaires.

<u>Définition</u>: "Produit scalaire"

Soit A, B et C trois points de l'espace.

Le produit scalaire des vecteurs \overrightarrow{AB} et \overrightarrow{AC} est le réel défini par :

$$- \overrightarrow{AB} \cdot \overrightarrow{AC} = 0 \text{ si } \overrightarrow{AB} = \overrightarrow{0} \text{ ou } \overrightarrow{AC} = \overrightarrow{0}.$$

$$-\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \cdot AC \cdot \cos B\widehat{AC} \text{ si } \overrightarrow{AB} \text{ et } \overrightarrow{AC} \text{ sont non nuls.}$$

$$\overrightarrow{AB} \cdot \overrightarrow{AB} = \left\| \overrightarrow{AB} \right\|^2 = AB^2.$$

<u>Propriétés</u>:

Professeur: Benjeddou Saber

Pour tous vecteurs \vec{u} , \vec{v} et \vec{w} de l'epace et tous réels α et β :

$$- \vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$$

$$- \quad \vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$$

$$- (\alpha \vec{u}) \cdot \vec{v} = \vec{u} \cdot (\alpha \vec{v}) = \alpha (\vec{u} \cdot \vec{v})$$

$$- (\alpha \vec{u}) \cdot (\beta \vec{v}) = \alpha \beta (\vec{u} \cdot \vec{v})$$

2/5

<u>Théorème</u>: "Expression analytique du produit scalaire"

Soit $(0, \vec{i}, \vec{j}, \vec{k})$ un RON de l'espace ξ .

Pour tous vecteurs
$$\vec{u} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$, on $a : \vec{u} \cdot \vec{v} = xx' + yy' + zz'$

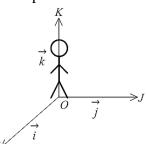
En particulier :
$$\|\vec{u}\| = \sqrt{x^2 + y^2 + z^2}$$

<u>Définition</u>: "Orientation de l'espace"

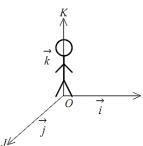
Soit $(0, \vec{i}, \vec{j}, \vec{k})$ un repère de l'espace.

Soit un observateur se tenant debout, dans l'axe $(0, \vec{k})$, les pieds en 0 et regardant le point I. Si l'observateur a le point J à sa gauche, le repère est dit direct. Il est dit indirect dans le cas contraire.

Repère direct



Repère indirect



- On dit que l'espace est orienté dans le sens direct s'il est muni d'un repère orthonormé direct.
- On dit que l'espace est orienté dans le sens indirect s'il est muni d'un repère orthonormé indirect.
- On dit que la base $(\vec{i}, \vec{j}, \vec{k})$ est directe, dans le cas où le repère $(O, \vec{i}, \vec{j}, \vec{k})$ est direct.
- On dit que la base $(\vec{i}, \vec{j}, \vec{k})$ est indirecte, dans le cas où le repère $(O, \vec{i}, \vec{j}, \vec{k})$ est indirect.
- Chaque permutation de deux vecteurs d'une base change l'orientation de cette base.
- Chaque permutation circulaire des trois vecteurs conserve l'orientation de la base.
- En remplaçant un vecteur d'une base par son opposé, on change l'orientation de cette base.

Théorème:

Soit \mathcal{P} un plan.

Professeur: Benjeddou Saber

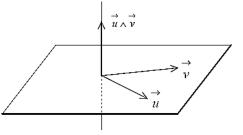
Pour toute base $(\vec{\imath}, \vec{\jmath})$ de \mathcal{P} et tout réel $\alpha > 0$, il existe un unique vecteur \vec{k} vérifiant $\|\vec{k}\| = \alpha, \vec{k} \cdot \vec{\imath} = \vec{k} \cdot \vec{\jmath} = 0$ et la base $(\vec{\imath}, \vec{\jmath}, \vec{k})$ est directe.

<u>Définition</u>: "Produit vectoriel"

Soit \vec{u} et \vec{v} deux vecteurs de l'espace. On appelle produit vrctoriel de \vec{u} et \vec{v} , l'unique vecteur noté $\vec{u} \wedge \vec{v}$ et défini par :

- Si \vec{u} et \vec{v} sont colinéaires, alors : $\vec{u} \wedge \vec{v} = \vec{0}$.
- Si non, alors:

 $\begin{cases} \vec{u} \wedge \vec{v} \text{ est orthogonal à } \vec{u} \text{ et à } \vec{v} \\ (\vec{u}, \vec{v}, \vec{u} \wedge \vec{v}) \text{ est une base directe} \\ ||\vec{u} \wedge \vec{v}|| = ||\vec{u}|| \cdot ||\vec{v}|| \cdot |\sin(\vec{u}, \vec{v})| \end{cases}$



Propriétés:

Pour tous vecteurs \vec{u} , \vec{v} et \vec{w} de l'epace et tous réels α et β :

- $-\vec{u} \wedge \vec{u} = \vec{0}$
- $-\vec{u} \wedge \vec{v} = \vec{0} \Leftrightarrow \vec{u} \text{ et } \vec{v} \text{ sont colinéaires}$
- $\vec{u} \wedge \vec{v} = -\vec{v} \wedge \vec{u}$
- $\vec{u} \wedge (\vec{v} + \vec{w}) = \vec{u} \wedge \vec{v} + \vec{u} \wedge \vec{w}$
- $(\vec{v} + \vec{w}) \wedge \vec{u} = \vec{v} \wedge \vec{u} + \vec{w} \wedge \vec{u}$
- $(\alpha \vec{u}) \wedge \vec{v} = \vec{u} \wedge (\alpha \vec{v}) = \alpha (\vec{u} \wedge \vec{v})$
- $(\alpha \vec{u}) \wedge (\beta \vec{v}) = \alpha \beta (\vec{u} \wedge \vec{v})$

<u>Théorème</u>: "Expression analytique du produit vectoriel"

Soit $(0, \vec{i}, \vec{j}, \vec{k})$ un ROND de l'espace.

Pour tous vecteurs $\vec{u} \begin{pmatrix} x \\ y \\ z' \end{pmatrix}$ et $\vec{v} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$, on $a : \vec{u} \land \vec{v} = \begin{vmatrix} y & y' \\ z & z' \end{vmatrix} \vec{i} - \begin{vmatrix} x & x' \\ z & z' \end{vmatrix} \vec{j} + \begin{vmatrix} x & x' \\ y & y' \end{vmatrix} \vec{k}$

<u>Propriété</u>:

Professeur : Benjeddou Saber

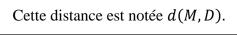
Soit $(0, \vec{i}, \vec{j}, \vec{k})$ un ROND de l'espace.

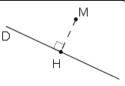
Pour tous vecteurs \vec{u} , \vec{v} et \vec{w} , on a:

$$(\vec{u} \wedge \vec{v}) \cdot \vec{w} = (\vec{v} \wedge \vec{w}) \cdot \vec{u} = (\vec{w} \wedge \vec{u}) \cdot \vec{v} = det(\vec{u}, \vec{v}, \vec{w})$$

<u>Définition</u>: "Distance d'un point à une droite "

On appelle distance d'un point M à une droite D, la distance MH, où H est le projeté orthogonal de M sur D.





<u>Théorème</u>: "Distance d'un point à une droite"

L'espace est muni d'un RON $(0, \vec{i}, \vec{j}, \vec{k})$.

Soit $D(A, \vec{u})$ une droite.

La distance de M à $D(A, \vec{u})$ est le réel positif : $d(A, D) = \frac{\|\overrightarrow{AM} \wedge \vec{u}\|}{\|\vec{u}\|}$

<u>Théorème</u> : "Aire d'un parallélogramme"

Soit $(0, \vec{i}, \vec{j}, \vec{k})$ un ROND de l'espace et *ABCD* un parallélogramme.

L'aire du parallélogramme ABCD est égale à : $\|\overrightarrow{AB} \wedge \overrightarrow{AD}\|$

En particulier, l'aire du triangle ABD est égale à : $\frac{1}{2} \| \overrightarrow{AB} \wedge \overrightarrow{AD} \|$

<u>Théorème</u> : "Volume d'un parallélépipède"

L'espace est muni d'un ROND $(0, \vec{i}, \vec{j}, \vec{k})$.

Soit ABCDEFGH un parallélipipède et V son volume. Alors :

 $V = aire\ de\ la\ base \times hauteur = \left| (\overrightarrow{AB} \wedge \overrightarrow{AD}) \cdot \overrightarrow{AE} \right| = \left| det(\overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AE}) \right|$

<u>Théorème</u>: "Volume d'un tétraèdre"

L'espace est muni d'un ROND $(0, \vec{i}, \vec{j}, \vec{k})$.

Soit *ABCD* un tétraèdre, *V* son volume et *h* la hauteur issue de *A*. Alors :

$$V = \frac{1}{3} aire \ de \ la \ base \times hauteur = \frac{1}{6} \left| \left(\overrightarrow{AB} \wedge \overrightarrow{AC} \right) \cdot \overrightarrow{AD} \right| = \frac{1}{6} \left| det \left(\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD} \right) \right|$$

$$h = \frac{\left| \left(\overrightarrow{AB} \wedge \overrightarrow{AC} \right) \cdot \overrightarrow{AD} \right|}{\left\| \overrightarrow{BC} \wedge \overrightarrow{BD} \right\|}$$