Classe : Bac sciences expérimentales Année scolaire : 2015/2016

Prof: M.Lassaad/55668162 Durée: 2 heures

Devoir de Révision

Exercice 1(5 points)

On considère la suite u définie sur \mathbb{N} par :

$$\begin{cases} u_0 = 0 \\ u_{n+1} = \frac{2}{\sqrt{4 - u_n^2}} \end{cases}$$

1) a-Montrer que $\forall n \in \mathbb{N} \ 0 \le U_n \le \sqrt{2}$.

b-Montrer que est croissante.U est- elle convergente?

2) Soit *v* la suite définie par $v_n = \frac{u_n^2}{4 - u_n^2}$.

a-Montrer que v_n est une suite arithmétique.

b- Exprimer v_n puis u_n en fonction de n. calculer $\lim u_n$.

3)a-Montrer $u_n^2 = 2 - \frac{2}{n+1}$.

b.Pour tout $n \in \mathbb{N}^*$, on pose $S_n = u_0^2 + \dots + u_{n-1}^2$

Montrer que $\forall n \in \mathbb{N}^*$, $S_n = 2n - 2(1 + \frac{1}{2} + \dots + \frac{1}{n})$

Exercice 2(5 points)

Soit $\theta \in [0, \frac{\pi}{2}]$.

$$P(z) = z^3 - 2(2 + \cos 2\theta)z^2 + 6(1 + \cos 2\theta)z - 4(1 + \cos 2\theta)$$

1) a- Vérifier que 2 est solution de l'équation P(z) = 0.

b-Résoudre dans \mathbb{C} l'équation P(z) = 0.

(On note z_1 et z_2 les deux solutions avec $\text{Im}(z_2 < 0)$.

c-Mettre z_1 et z_2 sous la forme exponentielle.

2) On désigne par A, M, M_1, M_2 les points d'affixes respectives $2, 2 + e^{i\theta}, z_1, z_2$.

a-Montrer que si $\theta \in [0, \frac{\pi}{2}[$ alors la droite (OM_1) est parallèle à (AM).

Déterminer $\theta_0 \in [0, \frac{\pi}{2}[$ pour que $OAMM_1$ soit un paralléleogramme.

b-Déterminer θ_1 pour que OM_2AM_1 soit un losange.

Problème(10 points)

Soit la fonction f définie sur $]1, +\infty[$ par $f(x) = x - \frac{1}{x \ln x}.$

Soit (C) la courbe représentative de f dans un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{j})$.

1)a-Etudier les variations de f.

b-Déterminer la droite Δ asymptote à (C) au voisinage de $+\infty$.

Préciser la position relative de (C) par rapport à Δ .

2) a- Montrer que f est une bijection de $]1,+\infty[$ sur $\mathbb{R}.$

soit (C') sa courbe représentative de f^{-1} .

b-Montrer que l'équation f(x) = 0 admet une solution unique α et que $1.5 < \alpha < 1.6$.

c-Montrer que la tangente T_{α} à (C) au point d'abscisse α admet pour équation T_{α} : $y = (2 + \alpha^2)(x - \alpha)$.

3) Construire dans le meme repère $(O, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{j})$ les courbes (C) et (C').

4)a- Soit A l'aire de la partie limitée par les droites d'équations $x = \alpha$ et x = e, y = x et la courbe (C).

Calculer A.

5) Pour $n \in \mathbb{N}^* \setminus \{1\}$ on pose $I_n = \int_{\alpha}^{e} \frac{dx}{x(\ln x)^n}$.

a-Calculer I_n .

b-Soit
$$v_n = \frac{\alpha^{2(n-1)}}{n-1}$$
. Calculer $ln(v_n)$.

Déduire $\lim v_n$ et $\lim I_n$.

