Lycée de Cebbala Sidi Bouzid Devoir de contrôle $n^{\circ}2$ – durée : 2h le 07/02/2016

Classe: 4sc. Exp. 1 Prof: Mr Barhoumi E.

CHIMIE: (9 points)

Toutes les solutions sont prises à 25°C, température à laquelle le produit ionique de l'eau est $K_e=10^{-14}$.

Exercice $n^{\circ}1$: (4,25 points)

On dispose des trois solutions basiques suivantes :

- une solution S_1 d'une monobase B_1 de concentration molaire $C_1=10^{-1}$ mol. L^{-1} et de p $H_1=11,1$;
- une solution S_2 d'une monobase B_2 de concentration molaire $C_2 = 10^{-2}$ mol. L^{-1} et de p $H_2 = 12$;
- une solution S_3 d'une monobase B_3 de concentration molaire $C_3=10^{-3}$ mol. L^{-1} et de p $H_3=10,1$.
- 1/On considère le couple acide base BH^+/B où B est une monobase faible dont sa solution aqueuse est de concentration molaire C.
- a- En utilisant l'avancement volumique y, dresser un tableau descriptif d'évolution du système. {0,75pt}
- b- Etablir l'expression de τ_f (taux d'avancement final de la réaction de la base B avec l'eau) en fonction de pH, p K_e et C en précisant l'approximation utilisée. $\{0,5pt\}$
- c-Montrer que l'une des monobases est forte et que les deux autres sont faibles. {0,75pt}
- $2/\ a \ -\ Montrer,\ en\ précisant\ l'approximation,\ que\ la\ constante\ de\ basicit\'e\ K_b\ du\ couple\ BH^+/B\quad s'\'ecrit:$

$$K_b = C. \tau_f^2. \{0.75pt\}$$

- b- En déduire que $pK_b = 2(pK_e pH) + logC$. {0,5pt}
- c- Montrer que les deux monobases faibles étudiées représentent en fait la même monobase. {0.5pt}
- 3/ La solution S_3 de la monobase B_3 est préparée à partir d'un volume V_1 =10mL de la solution S_1 , en lui ajoutant un volume V_e d'eau. Déterminer la valeur du volume V_{e} . {0,5pt}

Exercice $n^{\circ}2$: (4,75 points)

On considère une solution aqueuse (S_1) d'acide éthanoïque CH_3CO_2H de concentration molaire C_1 =0,2mol. L^{-1} , de pH_1 = 2,75.

- 1/ a- Exprimer le taux final d'avancement τ_{f_1} de la réaction d'ionisation de CH_3CO_2H dans l'eau en fonction de pH_1 et C_1 et calculer sa valeur. $\{0,75pt\}$
- b- Montrer que CH_3CO_2H est faiblement ionisé dans l'eau. ${}_{\{0,25pt\}}$
- 2/ a- Etablir l'expression de la constante d'acidité K_a du couple $(CH_3CO_2H/CH_3CO_2^-)$ en fonction du taux final d'avancement τ_{f_1} et C_1 , en précisant à chaque fois l'approximation nécessaire. $\{1pt\}$
- b- Calculer Ka. {0,25pt}
- 3/ A partir d'un volume V_1 de (S_1) , on réalise une dilution, par l'ajout d'un volume V_e d'eau pure. La solution (S_2) obtenu est de concentration molaire C_2 et de volume V_2 .
- a- Montrer que le taux d'avancement final τ_{f_2} de la réaction de l'acide éthanoïque avec l'eau dans la solution (S_2) s'écrit : $\tau_{f_2} = \tau_{f_1} \sqrt{\frac{C_1}{C_2}}$. $\{0.75pt\}$
- b- Exprimer pH₂ de la solution (S_2) en fonction du pH₁, C_1 et C_2 . {0,75pt}
- c- Calculer pH₂ et τ_{f_2} quand $V_e=3V_1$. {0,5pt}
- $\mbox{d}/\mbox{ Etudier, en le justifiant, }\mbox{ l'effet de cette dilution d'un acide faible sur : }$
- le taux final d'avancement τ_f . {0,25pt}
- le pH de la solution. {0,25pt}

PHYSIQUE (11 points)

Exercice n°1: (7 points)

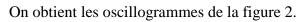
Le circuit schématisé ci-contre (figure-1) comporte :

- un générateur de basse fréquence GBF,
- un résistor de résistance $R=120\Omega$,
- une bobine d'inductance L et de résistance interne r,
- un condensateur de capacité C
- un ampèremètre,
- un voltmètre.

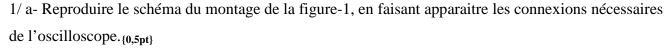
On fixe la fréquence de la tension de sorte que le GBF délivre une tension sinusoïdale $u(t)=U_m\sin{(2000\pi t+\frac{\pi}{2})}$ de valeur efficace et de phase initiale constantes.

L'intensité du courant qui circule dans le circuit est $i(t) = I_m sin \ (2\pi Nt + \phi_i) \ de \ valeur \ efficace \ indiquée \ par$ l'ampèremètre est $I = 25\sqrt{2} \ mA$.

A l'aide d'un oscilloscope bicourbe, on visualise sur la voie (1) la tension $u_c(t)$ et sur la voie (2) la tension $u_c(t)$ aux bornes du condensateur.



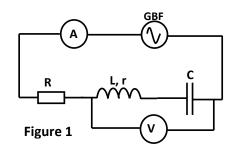
Les deux voies ont la même sensibilité verticale, soit 5V.div⁻¹.

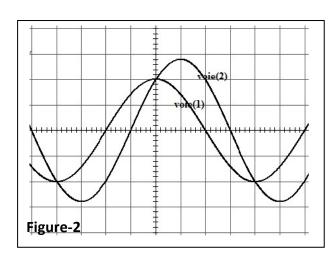


- b- Déterminer les expressions numériques des tensions de u(t) et $u_c(t)$. $\{1pt\}$
- c- Calculer ϕ_i . En déduire la nature du circuit. $\{0,75pt\}$
- 2/ a- Montrer que l'équation différentielle régissant l'intensité i(t) est donnée par :

$$(R+r)i(t) + L\frac{di(t)}{dt} + \frac{1}{C} \int i(t)dt = u(t).$$
 (0,5pt)

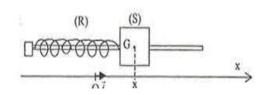
- b- Effectuer la construction de Fresnel relative à ce circuit en prenant pour échelle : (1cm→2V). {1pt}
- c-Déduire les valeurs de C, de L et de r. $\{1,25pt\}$
- d-Déterminer l'indication du voltmètre dans ces conditions. $\{0,5pt\}$
- 3/ a- En s'appuyant sur la construction de Fresnel, établir l'expression de l'amplitude I_m de l'intensité du courant en fonction de U_m , R, r, L, C et la pulsation ω . {0,5pt}
- b- Déduire l'expression de l'amplitude Q_m de la charge instantanée du condensateur. $\{0,25pt\}$
- c- Montrer que la pulsation à la résonance de charge est : $\omega_r = \sqrt{\omega_0^2 \frac{(R+r)^2}{2L^2}}$ où ω_0 représente la pulsation propre du résonateur. $\{0,5pt\}$
- d- Préciser, en justifiant, s'il faut augmenter ou diminuer la fréquence N du GBF pour atteindre la résonance de charge. {0.25pt}





Exercice n°2: (4 points)

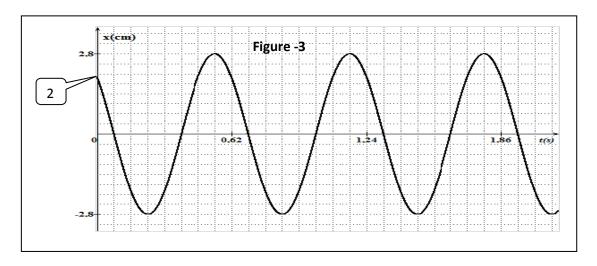
Un solide (S) de centre d'inertie G et de masse m=195g pouvant coulisser sans frottement le long d'une tige horizontale et attaché à l'extrémité libre d'un ressort (R) de raideur K.



La position de G est définie par son abscisse qu'on désigne par x dans le repère (O, \vec{i}) , O étant la position d'équilibre de G et \vec{i} un vecteur unitaire de même direction que la tige. La deuxième extrémité du ressort étant fixe dans le repère (O, \vec{i}) .

A partir d'une certaine date qu'on choisit comme origine du temps, un dispositif approprié a permis d'enregistrer l'évolution de l'élongation x de G en fonction du temps.

La figure -3 représente une partie de la courbe x=f(t)



- 1/ a- Etablir l'équation différentielle en fonction de l'élongation x(t). {0.5pt}
- b-Ecrire, en s'aidant de la courbe de la figure-3, l'expression numérique de x(t). {0.75pt}.
- c- Déterminer la valeur de K. {0.25nt}
- 2/ a- Montrer que l'énergie mécanique E du système (solide + ressort) se conserve. {1pt}
- b-Calculer la valeur de E. (0.5nt)
- c- Déterminer, à l'instant initiale, les valeurs de l'énergie potentielle élastique Epe(t=0) et celui de l'énergie cinétique Ec(t=0). {1pt}

Chimie: Ex.1.

1/a

équation	В +	$H_2O \longleftrightarrow$	BH ⁺ +	OH ⁻
t=0	С	excès	0	10 ⁻⁷
t>0	С-у	excès	У	y ₊ 10 ⁻⁷
t=t _f	C-y _f	excès	y f	y _f +10 ⁻⁷

$$\text{b-}\ \tau_f = \frac{y_f}{y_{max}}\ ;\ \text{avec}\ y_{max}\ = C\ ;$$

on néglige les ions OH provenant de l'eau devant celle provenant de la base : $[OH^-]_f = y_f + 10^{-7} \approx y_f$

$$\tau_{\rm f} = \frac{\rm [OH^{-}]}{\rm C} = \frac{\rm (^{Ke}/_{[H_3O^{+}]})}{\rm C} = \frac{\rm 10^{pH-pKe}}{\rm C} \; ;$$

$$\tau_{f_2} = \frac{10^{12-14}}{10^{-2}} = 1$$
 donc B₂ est une base forte.

$$\begin{split} &\tau_f = \frac{[0\text{H}^-]}{\text{C}} = \frac{(^{\text{Ke}}/[\text{H}_3\text{O}^+])}{\text{C}} = \frac{10^{\text{pH}}-\text{pKe}}{\text{C}} \ ; \\ &\text{c-}\ \tau_{f_1} = \frac{10^{11,1-14}}{10^{-1}} = 0,0125 < 1 \ \text{donc}\ B_1 \ \text{est une base faible}, \\ &\tau_{f_2} = \frac{10^{12-14}}{10^{-2}} = 1 \ \text{donc}\ B_2 \ \text{est une base forte}, \\ &\tau_{f_1} = \frac{10^{10,1-14}}{10^{-3}} = 0,125 < 1 \ \text{donc}\ B_3 \ \text{est une base faible}. \end{split}$$

2/ a- on néglige les ions OH provenant de l'eau devant celle provenant de la base : $[OH^-]_f = y_f + 10^{-7} \approx y_f$

Pour une base faible
$$C>>y_f\to C+y_f\approx C$$
 $K_b=\frac{[BH^+][OH^-]}{[B]}=\frac{(y_f)(y_f+10^{-7})}{C-y_f}-\frac{y_f^2}{C}-\frac{(C.\tau_f)^2}{C}=C.\,\tau_f^2$

$$b\text{-}K_b = \text{C.}\,\tau_f^2 \rightarrow \text{-log}(K_b) = \text{-log}(\text{C.}\,\tau_f^2) \rightarrow pK_b = \text{-logC} - 2\text{log}(\tau_f) \rightarrow pK_b = \text{-logC} - 2\text{log}(\frac{10^{\text{pH}-\text{pKe}}}{\text{C}})$$

 $pK_b = -\log C - 2\log(10^{pH-pKe}) + 2\log C \rightarrow pK_b = \log C - 2(pH-pKe) \rightarrow pK_b = 2(pKe-pH) + \log C.$ c- $pK_{b1} = 4.8$ et $pK_{b3} = 4.8$ donc B_1 et B_3 sont en fait la même monobase.

3/ Le nombre de fois de dilution est $n = \frac{C_1}{C_3} = 100 \rightarrow V_3 = 100 V_1 \rightarrow V_3 = 10x100 = 1000 mL$

→le volume d'eau ajouté est V_e = 990mL.

Chimie: Ex.2.

$$1/\text{ a- }\tau_f = \frac{y_f}{y_{max}} \text{ ; avec } y_{max} = \text{C et } y_f = [\text{H}_3\text{O}^+] \text{ donc } \tau_{f_1} = \frac{10^{-p\text{H}} \text{ 1}}{\text{C}_1} = \frac{10^{-2.75}}{0.2} = 0,00889.$$

b- τ_{f_1} <1 donc CH₃COOH est un acide faible.

2/a-

équation	CH₃COOH +	H ₂ O	\leftrightarrow	CH ₃ COO ⁻	+	H ₃ O ⁺
t=0	С	excès		0		10 ⁻⁷
t>0	C-y	excès		у		y ₊ 10 ⁻⁷
t=t _f	C-y _f	excès		y f		y _f +10 ⁻⁷

On néglige les ions H_3O^+ provenant de l'eau devant celle provenant de l'acide : $[H_3O^+]_f = y_f + 10^{-7} \approx y_f$

L'acide éthanoïque est un acide faible :
$$C >> y_f \rightarrow C + y_f \approx C$$
. $K_a = \frac{[CH3C00^-][H_30^+]}{[CH3C00H]} = \frac{(y_f)(y_f + 10^{-7})}{C - y_f} = \frac{y_f^2}{C} = \frac{(C.\tau_f)^2}{C} = C.\tau_f^2$ b- $K_a = 0.2x(0.00889)^2 = 15.8.10^{-6}$

$$b - K_a = 0.2x(0.00889)^2 = 15.8.10^{-6}$$

3/ a- Lors d'une dilution
$$K_a$$
 ne varie pas : $K_{a_1} = K_{a_2} \rightarrow C_1$. $\tau_{f1}^2 = C_2$. $\tau_{f2}^2 \rightarrow \left(\frac{\tau_{f2}}{\tau_{f1}}\right)^2 = \frac{C_1}{C_2} \rightarrow \tau_{f2} = \tau_{f1} \sqrt{\frac{C_1}{C_2}}$

b- le nombre de fois de dilution
$$n = \frac{C_1}{C_2} \rightarrow pH_2 = pH_1 + \frac{1}{2}\log(n) = pH_1 + \frac{1}{2}\log(\frac{C_1}{C_2})$$

c- Ve =
$$3V_1 \rightarrow V = V_1 + Ve = V_1 + 3V_1 = 4V_1 \rightarrow le$$
 nombre de fois de dilution n = $4 \rightarrow pH_2 = 2,75 + \frac{1}{2} log(4) = 3.05$

et
$$\tau_{f2} = 0.00889\sqrt{4} = 0.017$$
.

d- Avant dilution (pH₁ = 2,75) et après dilution (pH₂ = 3,05) \rightarrow le pH d'une solution acide faible augmente. Avant dilution ($\tau_{f1} = 0.00889$), après dilution (et $\tau_{f2} = 0.017$) $\rightarrow \tau_f$ d'un acide faible augmente.

Physique: Ex.1.

1/ a- voir figure-1.

b- u(t) =
$$U_m \sin (2000\pi t + \frac{\pi}{2})$$

$$U_m = 2x5 = 10V \rightarrow u(t) = 10 \sin(2000\pi t + \frac{\pi}{2})$$
;

 $u_C(t) = U_{cm} \sin(2000\pi t + \phi_{uc})$

$$U_{cm} = 2.4x5 = 14V$$

$$\varphi_{\rm u} - \varphi_{\rm uc} = \frac{2\pi}{T}$$
. $\Delta t = \frac{2\pi}{8} \times 1 = \frac{\pi}{4} \text{rad}$

Or
$$\varphi_{\rm u} = \frac{\pi}{2} {\rm rad}$$
, donc $\varphi_{\rm uc} = \frac{\pi}{4} {\rm rad}$

$$u_C(t) = 14 \sin(2000\pi t + \frac{\pi}{4})$$
;

c-
$$\phi_i - \phi_{uc} = \frac{\pi}{2}$$
 comme $\phi_{uc} = \frac{\pi}{4}$ donc $\phi_i = \frac{3\pi}{4}$ rad $\phi_i > \phi_u \rightarrow i(t)$ est en avance de phase sur $u(t) \rightarrow le$ circuit est capacitif.

2/ a- On applique la loi des mailles, et on aboutit à l'équation différentielle :

$$(R+r)i(t) + L\frac{di(t)}{dt} + \frac{1}{C}\int i(t)dt = u(t).$$
 b- Construction de Fresnel

$$c-I_m = I\sqrt{2} = 25\sqrt{2}\sqrt{2} = 50mA = 0.05A$$

c-
$$I_m = I\sqrt{2} = 25\sqrt{2}\sqrt{2} = 50\text{mA} = 0,05\text{A}$$

L ω $I_m = 3,5\text{x}2 = 7\text{V} \rightarrow L = \frac{7}{\omega\text{Im}} = \frac{7}{2000\text{x}3,14\text{x}0,05} = 0,022\text{H}$

$$RI_m = 120 \times 0.02 = 6V$$

$$(R+r)I_m = 3.5x2 = 7V \rightarrow r = \frac{7}{r} - R = 20\Omega$$

$$(R+r)I_{m} = 3.5x2 = 7V \rightarrow r = \frac{7}{Im} - R = 20\Omega$$

$$U_{cm} = \frac{Im}{C\omega} \rightarrow C = \frac{Im}{\omega U_{cm}} = \frac{0.05}{2000 \times 3.14 \times 14} = 5.68.10^{-7}F$$

d- L'indication du voltmètre est
$$U = I\sqrt{r^2 + (\frac{1}{Cw} - Lw)^2} = 5V$$
.

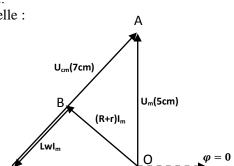


Figure 1

3/ a- Le théorème de Pythagore appliqué au triangle OAB rectangle en B, donne: $I_m = \frac{U_m}{\sqrt{(R+r)^2 + (\frac{1}{C_m} - L_w)^2}}$

b-
$$I_{m} = \omega Q_{m} \rightarrow : Q_{m} = \frac{I_{m}}{w} = \frac{U_{m}}{\sqrt{(R+r)^{2}\omega^{2} + (\frac{1}{C} - L\omega^{2})^{2}}}$$
 on pose $g(\omega) = (R+r)^{2}\omega^{2} + (\frac{1}{C} - L\omega^{2})^{2}$

c- A la résonance de charge Q_m devient maximale et g(w) devient minimal $g'(\omega) = 0 \rightarrow \omega_r = \sqrt{\omega_0^2 - \frac{(R+r)^2}{2L^2}}$

d- Calculons
$$\omega_0 = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{0.022 \times 5.68.10^{-7}}} = 8945 \text{ rad. s}^{-1} \text{ et } \omega_r = \sqrt{8945^2 - \frac{(120 + 20)^2}{2 \times 0.022^2}} = 7730 \text{ rad. s}^{-1}$$

On a $\omega = 2000x3,14 = 6280 \text{ rad. s}^{-1}$

 $\omega_r > \omega \rightarrow N_r > N \rightarrow il$ faut augmenter la fréquence N pour atteindre la résonance de charge.

Physique: Ex.2.

1/ a- L'équation différentielle : $\frac{d^2x}{dt^2} + \frac{k}{m}x = 0$.

b- x(t) =
$$X_m \sin(2\pi N_0 t + \phi_x)$$
; $N_0 = \frac{1}{T_0} = \frac{1}{0.62} = 1.61 \text{Hz}$; $X_m = 2.8 \text{ cm} = 2.8.10^{-2} \text{ m}$

$$2.8.10^{-2} \sin (\phi_x) = 0.02 \rightarrow \sin(\phi_x) = 0.707 \rightarrow \phi_x = \frac{\pi}{4} \text{ ou } \phi_x = \frac{3\pi}{4}$$

x(t) est décroissante au voisinage de $t = 0 \rightarrow cos(\phi_x)^{\frac{1}{4}} < 0 \rightarrow \phi_x = \frac{3\pi}{4} rad.$

finalement : $x(t) = 2.8.10^{-2} \sin(10.11t + \frac{3\pi}{4})$ {exprimé en m}

$$c-T_0 = 2\pi \sqrt{\frac{m}{k}} \rightarrow k = \frac{4\pi^2 m}{T_0^2} = 20 \text{ N.m}^{-1}$$

$$2/a - E = \frac{1}{2}kx^2 + \frac{1}{2}mv^2$$

$$\frac{dE}{dt} = kx\frac{dx}{dt} + mv\frac{dv}{dt} = kx\frac{dx}{dt} + m\frac{dx}{dt}\frac{d^2x}{dt^2} = \frac{dx}{dt}(kx + m\frac{d^2x}{dt^2})$$

or d'après l'équation différentielle $kx + m \frac{d^2x}{dt^2} = 0$ donc $\frac{dE}{dt} = 0$, ce qui montre que l'énergie mécanique du système {solide+ressort} est constante au cours du temps.

b- E =
$$\frac{1}{2}kX_{\rm m}^2 = 8.10^{-3}$$
 J.

c- A t = 0,
$$E_{pe} = \frac{1}{2}kx_0^2 = 4.10^{-3} \text{ J et on a } E = E_{pe} + E_c \rightarrow E_c = E - E_{pe} = 4.10^{-3} \text{ J}.$$

