Exercice 1

Description de la figure dans l'espace muni du repère orthonormé $(A; \overrightarrow{AB}; \overrightarrow{AD}; \overrightarrow{AE})$:

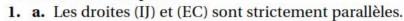
ABCDEFGH désigne un cube de côté 1.

On appelle \mathcal{P} le plan (AFH).

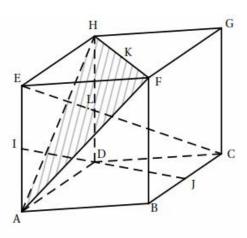
Le point I est le milieu du segment [AE], le point J est le milieu du segment [BC],

le point K est le milieu du segment [HF],

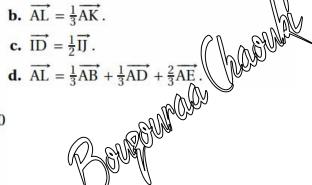
le point L est le point d'intersection de la droite (EC) et du plan \mathcal{P} .



- b. Les droites (IJ) et (EC) sont non coplanaires.
- c. Les droites (IJ) et (EC) sont sécantes.
- d. Les droites (IJ) et (EC) sont confondues.
- **2.** a. Le produit scalaire $\overrightarrow{AF} \cdot \overrightarrow{BG}$ est égal à 0.
 - **b.** Le produit scalaire $\overrightarrow{AF} \cdot \overrightarrow{BG}$ est égal à (-1).
 - c. Le produit scalaire $\overrightarrow{AF} \cdot \overrightarrow{BG}$ est égal à 1.
 - **d.** Le produit scalaire $\overrightarrow{AF} \cdot \overrightarrow{BG}$ est égal à 2.
- 3. Dans le repère orthonormé $(A; \overrightarrow{AB}; \overrightarrow{AD}; \overrightarrow{AE})$:
 - **a.** Le plan \mathcal{P} a pour équation cartésienne : x + y + z 1 = 0
 - **b.** Le plan \mathcal{P} a pour équation cartésienne : x y + z = 0.
 - **c.** Le plan \mathcal{P} a pour équation cartésienne : -x + y + z = 0.
 - **d.** Le plan \mathscr{P} a pour équation cartésienne : x + y z = 0.



- **4. a.** \overrightarrow{EG} est un vecteur normal au plan \mathscr{P} .
 - **b.** \overrightarrow{EL} est un vecteur normal au plan \mathscr{P} .
 - **c.** \overrightarrow{IJ} est un vecteur normal au plan \mathscr{P} .
 - **d.** \overrightarrow{DI} est un vecteur normal au plan \mathscr{P} .
- 5. **a.** $\overrightarrow{AL} = \frac{1}{2}\overrightarrow{AH} + \frac{1}{2}\overrightarrow{AF}$.
 - **b.** $\overrightarrow{AL} = \frac{1}{3}\overrightarrow{AK}$.



Exercice 2

Une jardinerie vend de jeunes plants d'arbres qui proviennent de trois horticulteurs : 35 % des plants proviennent de l'horticulteur H₁, 25 % de l'horticulteur H₂ et le reste de l'horticulteur H₃. Chaque horticulteur livre deux catégories d'arbres : des conifères et des arbres à feuilles.

La livraison de l'horticulteur H₁ comporte 80 % de conifères alors que celle de l'horticulteur H₂ n'en comporte que 50 % et celle de l'horticulteur H₃ seulement 30 %.

Le gérant de la jardinerie choisit un arbre au hasard dans son stock.

On envisage les événements suivants :

- H₁: « l'arbre choisi a été acheté chez l'horticulteur H₁ »,
- H₂: « l'arbre choisi a été acheté chez l'horticulteur H₂ »,
- H₃: « l'arbre choisi a été acheté chez l'horticulteur H₃ »,
- C: «l'arbre choisi est un conifère »,
- F: «l'arbre choisi est un arbre feuillu ».
- a. Construire un arbre pondéré traduisant la situation.
- Calculer la probabilité que l'arbre choisi soit un conifère acheté chez l'horticulteur H₃.
- c. Justifier que la probabilité de l'évènement C est égale à 0,525.
- L'arbre choisi est un conifère.

Quelle est la probabilité qu'il ait été acheté chez l'horticulteur H_1 ? On arrondira à 10^{-3} .

2. On choisit au hasard un échantillon de 10 arbres dans le stock de cette jardinerie. On suppose que ce stock est suffisamment important pour que ce choix puisse être assimilé à un tirage avec remise de 10 arbres dans le stock.

On appelle X la variable aléatoire qui donne le nombre de conifères de l'échantillon choisi.

- a. Justifier que X suit une loi binomiale dont on précisera les paramètres.
- **b.** Quelle est la probabilité que l'échantillon prélevé comporte exactement 5 conifères? On arrondira à 10^{-3} .
- c. Quelle est la probabilité que cet échantillon comporte au moins deux arbres feuillus? On arrondira à 10^{-3} .

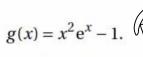
Exercice 2

Soit f la fonction dérivable, définie sur l'intervalle]0; $+\infty[$ par

$$f(x) = e^x + \frac{1}{x}.$$

1. Étude d'une fonction

a. Soit la fonction g dérivable, définie sur $[0; +\infty[$ par



Étudier le sens de variation de la fonction g.

The sur $[0; +\infty[$ par $g(x) = x^2e^x - 1$. The la fonction g. The latest and $g(x) = x^2e^x - 1$. **b.** Démontrer qu'il existe un unique réel a appartenant à $[0; +\infty[$ tel que g(a) = 0.

Démontrer que a appartient à l'intervalle [0,703; 0,704].

c. Déterminer le signe de g(x) sur $[0; +\infty[$.

2. Étude de la fonction f

- **a.** Déterminer les limites de la fonction f en 0 et en $+\infty$.
- **b.** On note f' la fonction dérivée de f sur l'intervalle]0; $+\infty[$. Démontrer que pour tout réel strictement positif x, $f'(x) = \frac{g(x)}{x^2}$.
- **c.** En déduire le sens de variation de la fonction f et dresser son tableau de variation sur l'intervalle]0; $+\infty[$.
- **d.** Démontrer que la fonction f admet pour minimum le nombre réel $m = \frac{1}{a^2} + \frac{1}{a}$.
- **e.** Justifier que 3,43 < m < 3,45.

Exercice 1

1. La bonne réponse est b.

Par l'absurde : si (IJ) et (EC) étaient coplanaires, alors, le point J appartiendrait au plan (ECI) c'est-à-dire au plan (ECA), ce qui est faux.

2. La bonne réponse est c.

Dans le repère mentionné dans le sujet, on a \overrightarrow{AF} (1; 0; 1) et \overrightarrow{BG} (0; 1; 1), d'où $\overrightarrow{AF} \cdot \overrightarrow{BG} = 1 \times 0 + 0 \times 1 + 1 \times 1 = 1.$

- 3. La bonne réponse est d . On le vérifie en injectant les coordonnées des points A, F et H dans l'équation x + y - z = 0.
- 4. La bonne réponse est b .

Un vecteur normal de \mathscr{P} est \overrightarrow{n} (1; 1; -1), or \overrightarrow{EC} (1; 1; -1). Par conséquent \overrightarrow{EC} est normal à \mathscr{P} , et comme \overrightarrow{EL} et \overrightarrow{EC} sont colinéaires, \overrightarrow{EL} est de ce fait aussi normal à \mathscr{P} .

5. La bonne réponse est d.

On a $\overrightarrow{EC}(1; 1; -1)$ et E(0; 0; 1); une représentation paramétrique de la droite (EC)

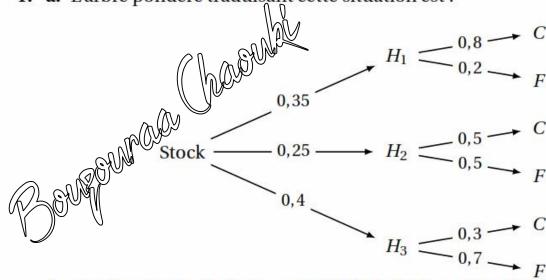
est donc $\begin{cases} x = t \\ y = t \ (t \in \mathbb{R}) \end{cases}$. Le point L a donc pour coordonnées L(t; t; 1-t), et z = 1-t

comme $L \in \mathcal{P}$ alors : t + t - (1 - t) = 0 d'où l'on tire $t = \frac{1}{3}$, c'est-à-dire $L(\frac{1}{3}; \frac{1}{3}; \frac{1}{3})$, d'où le résultat.

Exercice 2

Puisque le choix de l'arbre se fait au hasard dans le stock de la jardinerie, on assimile les proportions données à des probabilités.

1. a. L'arbre pondéré traduisant cette situation est :



- **b.** On cherche à calculer la probabilité de l'intersection $H_3 \cap C$, donc : $P(H_3 \cap C) = P(H_3) \times P_{H_3}(C) = 0, 4 \times 0, 3$. On a donc $P(H_3 \cap C) = 0, 12$.
- c. Puisque la jardinerie ne se fournit qu'auprès de trois horticulteurs, les événements H_1 , H_2 et H_3 forment une partition de l'univers. On peut donc appliquer la loi des probabilités totales, et on en déduit :

$$P(C) = P(H_1) \times P_{H_1}(C) + P(H_2) \times P_{H_2}(C) + P(H_3) \times P_{H_3}(C) = 0,35 \times 0,8 + 0,25 \times 0,5 + 0,4 \times 0,3 = 0,525.$$

d. On cherche cette fois à calculer une probabilité conditionnelle :

$$P_C(H_1) = \frac{P(H_1 \cap C)}{P(C)} = \frac{0,35 \times 0,8}{0,525} \approx 0,533.$$

- **2. a.** Nous avons un schéma de Bernoulli (l'arbre choisi est-il un conifère ?), avec une probabilité de succès de 0,525 qui est répété 10 fois de façon indépendante (puisque l'on suppose que les choix successifs peuvent être assimilés à un tirage au sort avec remise), donc la variable aléatoire *X* suit bien une loi binomiale de paramètres 10 et 0,525.
 - **b.** La probabilité demandée ici est celle de l'événement X = 5, et donc : $P(X = 5) = {10 \choose 5} \times 0,525^5 \times (1 0,525)^5$ Finalement $P(X = 5) \approx 0,243$.
 - **c.** Cette fois, la probabilité demandée est celle de $X \le 8$, qui est l'événement contraire de la réunion des événements disjoints X = 9 et X = 10. On a alors : $P(X \le 8) = 1 P(X = 9) P(X = 10) \approx 0,984$.

Exercice 3

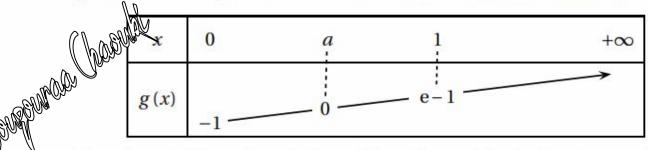
Soit f la fonction dérivable, définie sur l'intervalle]0; $+\infty[$ par $f(x) = e^x + \frac{1}{x}$.

1. Étude d'une fonction

a. Soit la fonction g dérivable, définie sur $[0; +\infty[$ par $g(x) = x^2e^x - 1$. Pour tout réel x de $[0; +\infty[: g'(x) = 2xe^x + x^2e^x \ge 0 \text{ sur }]0; +\infty[$ (car tous les termes sont positifs.

La fonction g est strictement croissante sur $[0; +\infty[$ (car la dérivée ne s'annule qu'en 0).

b. g(0) = -1 < 0 et g(1) = e - 1 > 0. Dressons le tableau de variations de g:



D'après ce tableau de variations, l'équation g(x) = 0 admet une solution unique dans l'intervalle [0;1]; on appelle a cette solution.

 $g(0,703) \approx -0.0018 < 0$ et $g(0,704) \approx 0.002 > 0$ donc $a \in [0,703;0,704]$.

- **c.** D'après le tableau de variations de g: g(x) < 0 sur [0; a]
 - g(x) > 0 sur a; $+\infty$

2. Étude de la fonction f

$$\begin{vmatrix}
\lim_{x \to 0} e^x = 1 \\
\lim_{x \to 0} \frac{1}{x} = +\infty
\end{vmatrix} \implies \lim_{x \to 0} e^x + \frac{1}{x} = +\infty \implies \lim_{x \to 0} f(x) = +\infty$$

$$\lim_{x \to +\infty} e^{x} = +\infty$$

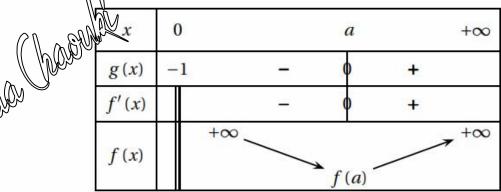
$$\lim_{x \to +\infty} \frac{1}{x} = 0$$

$$\implies \lim_{x \to +\infty} e^{x} + \frac{1}{x} = +\infty \implies \lim_{x \to +\infty} f(x) = +\infty$$

b. On note f' la fonction dérivée de f sur l'intervalle]0; $+\infty[$.

$$f(x) = e^x + \frac{1}{x} \Longrightarrow f'(x) = e^x - \frac{1}{x^2} = \frac{x^2 e^x - 1}{x^2} = \frac{g(x)}{x^2}$$

c. Pour tout x de]0; $+\infty[$, $x^2 > 0$ donc f'(x) est du signe de g(x). On dresse le tableau de variation de f:



d. D'après son tableau de variation, la fonction f admet le nombre f(a) comme minimum sur son intervalle de définition.

$$f(a) = e^{a} + \frac{1}{a}$$
. Or a est la solution de l'équation $g(x) = 0$ donc

$$g(a) = 0 \iff a^2 e^a - 1 = 0 \iff a^2 e^a = 1 \iff e^a = \frac{1}{a^2}.$$

On en déduit que $f(a) = \frac{1}{a^2} + \frac{1}{a}$ et on a donc démontré que la fonction f admettait pour minimum sur]0; $+\infty[$ le nombre réel $m = \frac{1}{a^2} + \frac{1}{a}$.

e. On a successivement(en valeurs approchées):

$$0,703 < a < 0,704$$
 $0,4942 < a^2 < 0,4957$
 $\frac{1}{0,4957} < \frac{1}{a^2} < \frac{1}{0,4942}$
 $2,017 < \frac{1}{a^2} < 2,024$
 $0,703 < a < 0,704$
 $\frac{1}{0,703} < \frac{1}{a} < \frac{1}{0,703}$
 $\frac{1}{0,704} < \frac{1}{a} < \frac{1}{0,703}$
 $1,420 < \frac{1}{a} < 1,423$

donc par somme : 2,017 + 1,420 < $\frac{1}{a^2}$ + $\frac{1}{a}$ < 2,024 + 1,423 et donc : 3,43 < m < 3,45