Lycée pilote El Menzah 8

DEVOIR DE SYNTHESE N°2

EPREUVE :

SCIENCES PHYSIQUES

Classes: 1er S

Durée : 1 heure

Profs: M^{me} Ben Fradj, M^{me} Laarif, M^{me} Nefzi, M^r Brahmi, M^r Ben Amor, M^r Chebbi

CHIMIE	
--------	--

	9	Nom:
		Prénom:
- 1	_	

Exercice $n^{\circ}1$ (4,5 pts)

À 10°C, la solubilité de chlorure de potassium KC ℓ est s_1 = 265 g.L⁻¹.

À 60° C elle devient égale à $s_2 = 290 \text{ g.L}^{-1}$.

On donne: Les masses molaires atomiques: $M(C\ell) = 35,5 \text{ mol.L}^{-1}$; $M(K) = 39 \text{ mol.L}^{-1}$.

1°) À 10°C, on introduit une masse m de KCℓ dans un bécher contenant de l'eau pure.

Après agitation, on obtient mélange (M) de volume V_1 = 50 mL contenant un dépôt solide de masse m' = 1 g

	a-	Déterminer la masse maximale m_1 du soluté qu'on peut dissoudre dans $50~mL$ d'eau pure à $10^{\circ}C$.	1
	b-	En déduire la valeur de la masse m de KCℓ initialement introduite.	0,5
2°) Le	mélange (M) est maintenant chauffé jusqu'à la température 60°C .	
	a- 	Montrer que le mélange (M) est maintenant homogène.	1
	b- 	Déterminer sa concentration molaire.	
	C-	Qu'elle masse m ₂ de soluté peut-on dissoudre dans le mélange (M) à 60°C ?	1
	••••		1

Exercice $n^{\circ}2$ (3,5 pts)

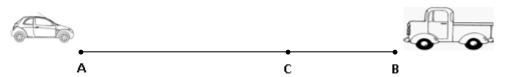
Exposé à la lumière vive, le méthane réagit lentement avec le dichlore pour donner le chlorométhane et le chlorure d'hydrogène.

1°) Définir une réaction chimique.	
· · · · · · · · · · · · · · · · · · ·	
	0,5
2°) Préciser les réactifs et les produits de cette réaction.	
> Réactifs :	0,5
> Produits :	0,5
3°) Écrire le schéma de cette réaction.	
·	0,5
4°) Donner en justifiant la réponse deux caractère de cette réaction.	
	1
5°) Afin d'atteindre l'état final plus rapidement, on se propose d'introduire une substance dans	
le mélange. Qu'appelle-t-on cette substance ? Quel est son rôle ?	
	0,5

PHYSIQUE

Exercice $n^{\circ}1$ (5,5 pts)

Lycée pílote El Menzah 8

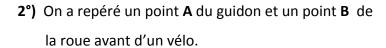

À 8 heure, une voiture part d'une ville A. Elle arrive à 11 heure à une ville B. Le mouvement de la voiture est supposé uniforme. On donne: **AB = 270 km**. 1°) Définir la vitesse moyenne : 0,5 2°) Déterminer la vitesse moyenne V₁ de la voiture au cours de son parcours en km.h⁻¹ puis en m.s⁻¹ 1,5 **3°)** Une ville **C** se trouve sur le trajet tel que : AC = 180 km. Déterminer la durée du parcours AC. 1,25 4°) En choisissant: comme origine des espaces le point C. 1 comme origine des temps l'instant ou la voiture passe par le point A . Compléter le tableau suivant : (page 3/4) :

Page 2 sur 4

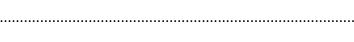
Devoir de synthèse N°2

Position	Α	С	В
Abscisse x (en km) dans le repère (\mathbf{C} , \vec{i}).			
$\vec{\imath}$ étant un vecteur unitaire.	x _A =	$x_c = 0$	χ _B =
Instant de date t(h)	t _A = 0	t _C =	t _B =

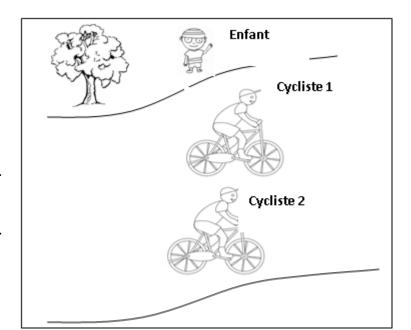
5°) Un camion quitte la ville B au même instant ou la voiture quitte la ville A.

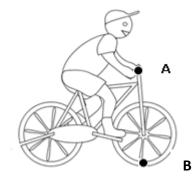


Le camion se dirige vers la ville A avec une vitesse constante V₂. Déterminer la valeur de la vitesse V_2 pour que la voiture et le camion se croisent en C.


1,25

Exercice n°2 (6,5 pts)


- 1°) Observer le schéma ci-contre : Les deux vélos roulent avec une même vitesse. Compléter par « au repos » ou « en mouvement ».
- Le cycliste (1) est par rapport au cycliste (2).
- Le cycliste (1) est par rapport à son vélo.
- L'enfant est par rapport au cycliste (1).
- L'arbre est par rapport à l'enfant.



a) Définir la trajectoire d'un mobile :

- **b)** Tracer l'allure de la trajectoire :
 - du point A par rapport à une personne immobile sur le trottoir.
 - b du point **B** par rapport à une personne immobile sur le trottoir.

0,5

0,5

	➤ du point B par rapport au cycliste.	0,25
Co	nclure :	0.5
c)	On donne ci-dessous un cliché correspondant a une chronophotographie du mouvement du point A à l'échelle ($1 \text{ cm} \rightarrow 20 \text{ cm}$). L'intervalle de temps entre deux points marquées est $\theta = 25 \text{ ms}$. $A_0 A_1 A_2 A_3 A_4 A_5 A_6 A_7 A_8$ $\bullet \bullet \bullet \bullet \bullet \bullet \bullet$ Quelle est la nature du mouvement du vélo ? Justifier :	0,5
	Quelle est la flature du mouvement du velo : Justinei .	0,75
> 	Déterminer sa vitesse moyenne V _A le long du parcours A ₀ A ₈	0,5
>	Déduire sa vitesse à chaque instant. (Sans faire de calculs)	0,5
d)	On donne ci-dessous un cliché correspondant à une chronophotographie du mouvement point B . L'intervalle de temps entre deux points marqués est θ = 25 ms .	
> 	Sol Déterminer la durée d'un tour complet du point B .	0,75
> ····	Le rayon de la roue avant étant $\bf R$ = 32 cm. Déterminer la vitesse moyenne $\bf V_B$ du point $\bf B$ au bout d'un tour complet.	
>	Comparer V _A et V _B . Expliquer .	0,5
	σ_{i}	lote

Page 4 sur 4

Devoir de synthèse N°2

1er S

Mars 2014

Lycée pílote El Menzah 8