Prof : Bouzouraa.Anis Série d'éxercices de (suites réelles) Niveau : toutes les sections

Exercice1

Soit U la suite définie sur IN par $U_n = e^{-n+1}$ pour tout entier n.

- 1) Montre que $0 < U_n \le e \quad \forall n \in IN$
- 2) Montrer que U est une suite géométrique dont on précisera la raison q.
- 3) Calculer $\lim_{n\to+\infty}U_n$

Exercice2

Soit f la fonction définie sur [0 ,ln(2)] par :f(x) = $\frac{e^x}{e^x+2a}$

- 1) Calculer f'(x); f"(x)
- 2) Etudier f' .En déduire que $\frac{2}{9} \le f'(x) \le \frac{1}{4}$ pour tout $x \in [0, \ln 2]$
- 3) Etudier f. En déduire un encadrement de f sur [0, ln2]
- 4) Soit $\varphi(x) = f(x)-x$
- a- Etudier φ sur [0,ln2]
- b- En déduire qu'il existe un seul réel $x_0 \in [0,ln2]$ tel que $f(x_0) = x_0$
- c- Déterminer le signe de φ (x) sur [0, ln2]
- 5) Montrer, à l'aide du théorème des accroissements finis que :

$$|f(x) - x_0| \le \frac{1}{4}|x - x_0| \ \forall \ x \in [0, \ln 2]$$

- II°/ On considère la suite (t_n) définie par : t_0 =0 et t_{n+1} = $f(t_n)$ $\forall n \in IN$
- 1) Calculer t₁
 - 2) Montrer, par récurrence que :
 - a) $t_n \in [0, ln2] \ \forall n \in IN$
 - b) $|\mathbf{t}_n \mathbf{x}_0| \le \left(\frac{1}{4}\right)^n \ \forall n \in IN$
- 3) En déduire que la suite (t_n) est convergente et calculer sa limite.

Prof : Bouzouraa.Anis Série d'éxercices de (suites réelles) Niveau : toutes les sections

4) Déterminer le plus petit entier n tel que $|t_n-x_0| \le 10^{-5}$.

Exercice3

Soit U la suite définie sur IN par $U_n = \sum_{k=0}^{k=n-1} rac{n^2}{n^3+k}$

1)Calculer U₁ etU₂

2)Montrer que
$$\frac{n^2}{n^2+1} \leq U_n \leq \frac{n^3}{n^3+1} \; \forall n \in \mathit{IN}.$$

3)En déduire la limite de la suite(U_n)

Exercice4

1) Soit f la fonction définie sur $[2; +\infty[$ par $f(x) = \frac{2}{x} + \frac{x}{2}$

a)Etudier les variations de f sur $[2; +\infty[$.

b)Montrer que $2 \le f(x) \le 2\sqrt{2} \ \forall \ x \in [2; 2\sqrt{2}].$

c)Montrer que f(x) $\leq x \forall x \in [2; 2\sqrt{2}].$

2) Soit V la suite définie sur IN par $V_0 = 2\sqrt{2}$ et $V_{n+1} = f(V_n) \ \forall n \in IN$.

a)Montrer que $2 \le V_n \le 2\sqrt{2} \ \forall n \in IN$.

b)Montrer que la suite V est décroissante.

c)Justifier que V est une suite convergente et déterminer sa limite.