Exercice n°1: (6 points)

Soit U une suite arithmétique de raison r = 1.

- 1) On suppose que : $U_2 + U_3 = 9$
 - a) Ecrire $U_2 + U_3$ en fonction de U_1 et r.
 - b) Déduire que $U_1 = 3$
- 2) a)Ecrire U_n en fonction de n.
 - b) Calculer U₂₀.
- 3) Calculer la somme $S = U_1 + U_2 + + U_{10}$.
- 4) On pose $S_n = U_1 + U_2 + \dots + U_n$. Déterminer l'entier naturel n sachant que $S_n = 25$

Exercice n°2:(6 points)

Soit la suite U définie sur IN par $\begin{cases} U_o = 1 \\ U_{n+1} = \frac{U_n}{1 + 4U} \end{cases}$

- 1) a) Calculer U_1 et U_2 .
 - b) U est elle arithmétique ? Justifier votre réponse.
- 2) Soit la suite V définie sur IN par $V_n = \frac{1}{U_n}$
- a) Montrer que V est une suite arithmétique de raison 4.
- b) Exprimer V_n puis U_n en fonction de n.
- c) Calculer U₂₀.
- d) Calculer la somme $S = \frac{2}{U_0} + \frac{2}{U_1} + \frac{2}{U_2} + ... + \frac{2}{U_{10}}$

Exercice n°3:(3points)

- 1) Vérifier 7²-1 est divisible par 6
- 2) Soit n un entier naturel non nul.
 - a) Montrer que si (n-1) est divisible par 6 alors $7^2n 1$ est aussi divisible par 6?
 - b) déduire que : 7⁴ -1 et 7⁶ -1 sont divisibles par 6.

Exercice n°4:(5 points)

Soit ABC un triangle équilatéral <u>direct</u> et soit R la rotation <u>directe</u> de centre A et d'angle $\frac{\pi}{3}$.

- 1) Montrer que R(B) = C
- 2) a) Construire le point D = R(C).
 - b) Quelle est la nature du triangle ACD ? Justifier votre réponse.
 - c) Déduire que ABCD est losange.
- 3) Soit H le centre du losange ABCD et soit I le milieu de [BC] et J le milieu [CD]. Montrer que R(I) = J
- 4) Soit (C₁) le cercle de diamètre [BC] et (C₂) le cercle de diamètre [CD] qui se coupent en C et en H. (C_2) recoupe [AD] en k
 - a) Montrer que $R((C_1)) = (C_2)$.
 - b) Montrer que AHK est équilatéral.

Bon travail