Lycée A.K Echebbi

2009-2010

Devoir de contrôle n°03 en mathématiques (2^{ème} sciences)

Prof: Bourokba.H

Durée: 1h

Exercice 1 (4 points)

Pour chaque énoncé, on propose trois réponses a , b et c. Une seule est correcte. Laquelle ?

Aucune justification demandée.

Une réponse correcte vaut 1 point, une réponse fausse ou l'absence de réponse vaut 0 point.

1) Parmi les fonctions suivantes, déterminer celle qui est un polynôme.

a)
$$f: \mathbb{R} \to \mathbb{R}$$

b)
$$g: \mathbb{R} \to \mathbb{R}$$

c) h:
$$\mathbb{R} \to \mathbb{R}$$

$$x \mapsto x^3 + 4|x|$$

$$x \mapsto 3x^6 - 2x + \frac{1}{x^2 + 1}$$

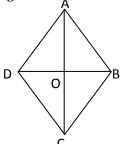
$$x \mapsto 4\sqrt{5}$$

2) Soit
$$P(x) = (x^3 + 1)^2$$

2) Soit
$$P(x) = (x^3 + 1)^2$$
 et $Q(x) = x^3 + \frac{1}{2}x^2 + \sqrt{3}(x - 1)$. Le degré de $P.Q$ est égal à

a) 9

b) 8



- 3) Dans la figure ci-contre ABCD est un losange de centreO.
- i) L'image de la droite (AB) par la translation de vecteur \overrightarrow{AC} est
- a) La droite (AD)
- b) La droite (DC)

- c) La droite (BC)
- ii) Parmi les applications suivantes, déterminer celle qui envoie la droite (BC) sur la droite(DC).
- a) La symétrie centrale S_0
- b) La symétrie orthogonale $S_{(AC)}$
- c) La translation $t_{\overrightarrow{RD}}$

Exercice 2 (8 points)

1) Soit
$$P(x) = x^3 - x^2 - x - 2$$

- a) Vérifier que 2 est une racine de P.
- b) Factoriser alors le polynôme P
- 2) Résoudre l'équation $x^2 + 2x 8 = 0$ puis factoriser $x^2 + 2x 8$
- 3) Soit h la fonction rationnelle définie par $h(x) = \frac{(x-2)(x^2+x+1)}{x^2+2x-8}$
- a) Déterminer l'ensemble de définition D de la fonction h
- b) Pour tout réel x appartenant à D, simplifier h(x) puis déterminer son signe.

Exercice3 (8 points)

Dans la figure ci-dessous (ζ) est un cercle de centre O et de diamètre [AC] et B est un point du cercle (ζ) .

- 1) Soit l'application t de plan dans lui-même qui à tout point M associe le point M' définie par $\overrightarrow{MM'} = \overrightarrow{MC} \overrightarrow{MA}$
 - a) Montrer que t est une translation de vecteur \overrightarrow{AC}
 - b) Déterminer et construire le cercle (ζ') image de cercle (ζ) par la translation t
 - c) Montrer que le point C appartient au cercle (ζ')
- 2) Soit M un point variable sur le cercle (ζ) . La droite (OM) recoupe le cercle (ζ) en I.

La parallèle à (OC) passant par M coupe la droite (CI) en N.

- a) Montrer que $\overrightarrow{MN} = \overrightarrow{AC}$
- b) Quel est alors l'ensemble des points N lorsque le point M décrit le cercle (ζ) ?
- 3)a) Construire le point E l'image de B par la translation de vecteur \overrightarrow{OA}
 - b) Démontrer que $(OE) \perp (AB)$.

