Lycée second ELGOUSSA

Prof: S. Noureddine

Devoir de synthèse n°1 (Sciences physiques)

Classes de 2^{ème} sciences Durée : 2H Nov 2012

Nom et prénom :....

Partie chimie (8pts) Exercice $n^{\bullet} 1$ On donne les nombres de charge des atomes suivants :Mg(Z=12);O(Z=8);Ne(Z=10);	Barème	capacité
1°/ Donner pour chaque atome la formule électronique et le nombre d'électrons de valence.	1	A_1
2°/ En déduire leurs schémas de Lewis.	1	A_1
3°/ a°/ Enoncer les règles de duet et de l'octet.		
b°/ Lequel des atomes ci-dessus est stable ? Justifier la réponse.	1	A ₁
b / Lequel des d'ontes ci-dessus est s'able / Justifier la reportse.	0.5	A_1
4°/ Pour acquérir une grande stabilité, l'atome d'oxygène se transforme en un ion. a°/ Selon quelle règle se forme cet ion ? Justifier la réponse.	0.5	A2
b°/ Donner le symbole et la structure électronique de l'ion oxygène obtenu.	0.5	
5° / Le symbole chimique de l'ion magnésium est Mg^{2+} . Expliquer la formation de cet ion et préciser la règle satisfaite pour cet ion.	0.3	A_1
Exercice n°2	0.5	\mathbf{A}_2
1- on donne le symbole d'atome X: ${}^{A}_{Z}X$. Que ${}^{A}_{Z}X$ et ${}^{A}_{Z}$ pour cet atome ?	1	A ₁
2- si X constitue un atome de carbone où Z=6 et A=12. a- Déterminer le nombre N de neutrons dans le noyau de l'atome de carbone.		
·	1 	A ₁
3- donner la définition d'un isotope et déterminer les atomes isotopes dans cette liste : , $^{22}_{11}Na$, $^{31}_{15}P$, $^{32}_{15}P$, $^{31}_{11}Na$		
	1	A_1

Partie physique (12pts)		
Exercice n° 1 Soit le circuit électrique de la figure ci-contre	<u>U</u>	
constitué d'un générateur (G) délivrant une tension		
U = 12 V, d'un moteur électrique (M)		
de f.c.é.m. : E' et de résistance interne : r', d'un		
Ampèremètre (A), un voltmètre (V) et d'un dipôle	R	
résistor de résistance R.		
La caractéristique intensité-tension du moteur électrique (M) est représen	tée sur la figure(2).	
1/- Déterminer les valeurs de E' et de r'.		
10.5		A_1
9		1
2) l'intensité du courant I qui traverse ce circuit est : 0.2A.	fig(2).	
a- établir l'expression de la puissance électrique reçue par le moteur en fonction de : E', I et r'. 0.5	I(A)	C
	2	C
b- déduire les expressions de la puissance utile et celle de la puissance dis	sipée par effet joule.	
	2	A2
c) calculer les valeurs de ces deux puissances.		4.2
	1	A2
3) déterminer le rendement ρ_M du moteur.		
	1	A1
Exercice n^2 soit le circuit suivant : 1/Déterminer la résistance équivalente R_{eq} des résistors		
R1, R2, R3. On donne R1=R2=R3=10Ω	U =12V	
	R1	
	R3 2	A2
	R2	
2/ la tension aux bornes du générateur est U =12V. Déterminer l'intensité]	I délivrée par le	A2
générateur. 3- nommer et énoncer la loi que vous avez utilisé :		
5- nominier et enoncer la loi que vous avez utilise		
	1	A1