Exercice 1

Soit la fonction f définie sur I =] 0,1[par : $f(x) = \frac{2x-1}{\sqrt{x-x^2}}$.

On désigne par (Cf) la courbe représentative de f un repère $(0, \vec{\iota}, \vec{j})$

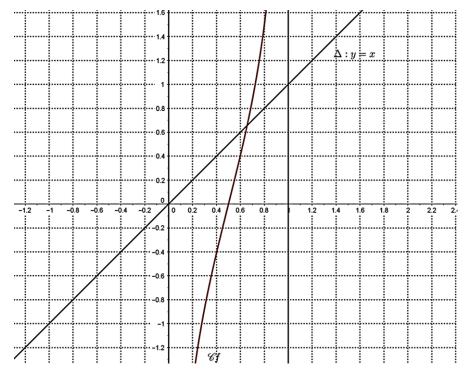
- 1) a) Montrer que f est dérivable sur I et que pour tout x de I, $f'(x) = \frac{1}{2(\sqrt{x-x^2})^3}$ A
 - b) Dresser le tableau variation de f.
 - 2) a) Déterminer f "(x) et montrer que (Cf) admet un point d'inflexion I au point d'abscisse $\frac{1}{2}$
 - b) Ecrire l'équation de la tangente T à (Cf) au point I.
 - 3) a) Montrer que f réalise une bijection de I sur un intervalle J à préciser.
 - b) En annexe (1) , on donne Cf la représentation graphique de f, tracer la courbe (C') de f^{-1} .
 - c) Montrer que pour tout réel x de J , $f^{-1}(x) = \frac{1}{2} + \frac{x}{2\sqrt{x^2+4}}$

B-

Soit h la fonction définie sur $[0, \frac{\pi}{2}[par g(x) = \begin{cases} \frac{2}{f(\frac{1+cos(x)}{2})} & si \ x \neq 0 \\ 0 & si \ x = 0 \end{cases}$

- 1) a) Montrer que g est continue à droite en 0
 - b) Montrer que pour tout $x \in [0, \frac{\pi}{2}[;g(x) = \tan(x)]$.
 - c) Montrer que g réalise une bijection de $[0, \frac{\pi}{2}]$ sur $[0, +\infty[$
- 2) a) Soit φ la fonction réciproque de g. Calculer φ (0) ; φ (1) et $\varphi(\sqrt{3})$.
 - b) Montrer que φ est dérivable sur $[0,+\infty[$ et que pour tout x de $[0,+\infty[$; φ ' (x) = $\frac{1}{1+x^2}$
- **3)** On pose $k(x) = \varphi(x) + \varphi(\frac{1}{x})$; x > 0.
 - a) Montrer que k est dérivable sur] $0 : +\infty[$ et Calculer k'(x) pour tout x > 0.
 - b) Montrer que pour tout x de $]0,+\infty[$, $\varphi(x)+\varphi(\frac{1}{x})=\frac{\pi}{2}$

Annexe (1)



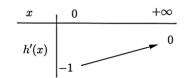
Exercice 2 Lecture graphique

- -La droite d'équation y = 1 est asymptote à la courbe ℃f en + ∞
- -La courbe \mathcal{T}_f admet deux demi tangentes à la courbe \mathcal{T}_f aux points A et B
- -La droite D d'équation y = -0.46x-0.17 est , une tangente au point C à la courbe \mathcal{G}

Α-

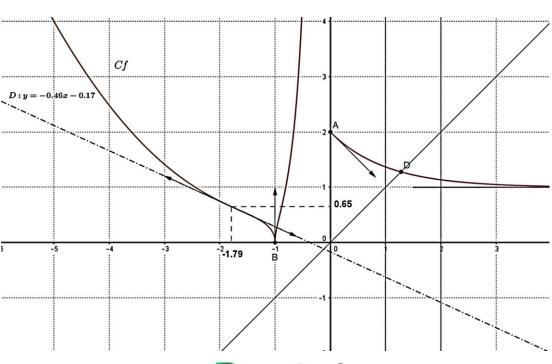
- 1. Dresser le tableau de variation de f sur IR
- **2.** Déterminer $\lim_{x \to +\infty} f(x)$, $\lim_{x \to 0^-} f(x)$, $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to -\infty} \frac{f(x)}{x}$.
- 3. Déterminer f_d '(0) et donner l'équation de la tangente à Cf à droite du point A
- 4. Justifier que C est un point d'inflexion à C f
- 5. Soit g la restriction de f à l'intervalle $]-\infty;-1]$ définie par $f(x)=\sqrt{-x-1}+\frac{1}{4}(x^2+4x+3)$
 - a. Etudier la dérivabilité de g à gauche en -1. Interpréter
 - b. Montrer que g réalise une bijection de l'intervalle $]-\infty;-1]$ sur un intervalle J que l'on précisera
 - c. Prouver que $\mathbf{g}^{\text{-1}}$ est dérivable à droite en 0 et donner $\left(g_d^{\text{-1}}\right)$ '(0)
- B- Dans cette partie, on désigne par h la restriction de f sur [0,+∞[et h' sa fonction dérivée définie sur [0,+∞[On admet que les points S (1; 1,37) et T (2; 1.14) appartiennent à la courbe de la fonction h les points H (1; -0.37) et K (2; -0.14) appartiennent à la courbe de la fonction h' la dérivée de h

On donne aussi le tableau de variation de la fonction h' dérivée de h



- 1) a)Montrer que pour tout réel $x \in [1; 2]$, $h(x) \in [1; 2]$
 - b) Montrer que pour tout réel $x \in [1;2]$, $|h'(x)| \le 0.37$
 - c) Montrer que l'équation h(x) = x admet une solution unique α dans [1;2]
 - 2) on considère la suite (u_n) définie par $\begin{cases} u_0 \in [1,2] & \text{et } u_0 \neq \alpha \\ u_{n+1} = h(u_n) \end{cases}$
 - a) Montrer que pour tout entier naturel $1 \le u_n \le 2$
 - b) Montrer que pour tout entier naturel, $|u_{n+1} \alpha| \le 0.37 |u_n \alpha|$
 - c. En déduire par récurrence, que pour tout entier naturel n, $|u_n \alpha| \le (0.37)^n |u_0 \alpha|$
 - d. En déduire la limite de la suite u_n

Annexe(2)



Exercice 3

On considère la suite $(u_n)_{n\in N}$ définie par : $\begin{cases} u_0^{-4} \\ u_{n+1} = \frac{5 u_n - 4}{u_n + 1} \end{cases}$

- 1)a)Calculer U_1 et U_2
 - b) Montrer par récurrence que $\forall n \in \square$, $u_n \succ 2$
- 2)a) Vérifier que $\forall n \in \square$, $u_{n+1} u_n = \frac{-(u_n 2)^2}{u_n + 1}$
 - b) En déduire la monotonie la suite u_n
 - c) En déduire que la suite u_n est convergente et déterminer sa limite
- 3) On considère la suite (a_n) définie par $a_n = \frac{1}{u_n 2}$
 - a) Prouver que $\left(a_n\right)$ est une suite arithmétique de raison $r=\frac{1}{3}$ et donner son premier terme
 - b) Exprimer (a_n) en fonction de n .
 - 4) On pose pour tout $\forall n \in \square$ $S_n = \sum_{k=0}^n 2^{3a_ku_k}$

Montrer que $\forall n \in \square$ et $S_n = \frac{64}{3} (4^{n+1} - 1)$ Montrer que S_n est divergente

Exercice n°4

Le plan complexe est rapporté à un repère orthonormé direct $(0,\overrightarrow{u},\overrightarrow{v})$

Soit dans \Box , l'équation: (E_{θ}) : $z^2 - 2z - 2i\sin\theta e^{i\theta} = 0$, $\theta \in]0,\pi[$

- **1. a-** Montrer que : $1 + 2i\sin\theta e^{i\theta} = (e^{i\theta})^2$
 - **b-** Résoudre dans \Box l'équation (E_{θ})
- **2.** Soit $f(z) = z^3 4z^2 + 2(2 i\sin\theta e^{i\theta})z + 4i\sin\theta e^{i\theta}$
 - **a.** Calculer .f(2)
 - **b.** Vérifier que $f(z) = (z-2)(z^2+bz+c)$ où b et c sont deux nombres complexes à déterminer.
 - **c.** Résoudre alors dans \Box . f(z) = 0
- **3.** On désigne par A,B et C les points d'affixes : 2, $1 + e^{i\theta}$ et $1 e^{i\theta}$
 - **a.** Montrer que :*OBAC* est un rectangle.
 - **b.** Déterminer θ pour que *OBAC* soit un carré.

3/3