Mathématiques

Devoir de Synthèse N°1

Lycée Takelsa

Classe: 4 ème Sc. Exp 1

Date: le 15/12/2015

Durée: 2 h

Prof: Ziadi Mourad

Exercice N:1 (06pts)

Soit f la fonction définie sur $[0, +\infty[$ par $f(x) = \sqrt{x}$.

1)a) Soit x > 0; montrer que pour tout $t \in [x, x+1]$ on a: $\frac{1}{2\sqrt{x+1}} \le f'(t) \le \frac{1}{2\sqrt{x}}$

b) En déduire que pour tout réel x > 0 on a : $\frac{1}{2\sqrt{x+1}} \le \sqrt{x+1} - \sqrt{x} \le \frac{1}{2\sqrt{x}}$

2) Soit (U_n) la suite définie sur $\mathbb N$ par : $U_n = \sqrt{n+1} - \sqrt{n}\,$.

Montrer que la suite (U_n) est convergente vers un réel L que l'on déterminera.

3) Soit (V_n) la suite définie sur \mathbb{N}^* par : $V_n = \sum_{k=1}^n \frac{1}{\sqrt{k}}$.

a) Montrer que pour tout $n \in \mathbb{N}^*$ on $a : V_n \ge \sqrt{n}$.

b) La suite (V_n) est-elle convergente?

4) a) Montrer que pour tout $n \in \mathbb{N}^*$ on a : $U_n \leq \frac{1}{2\sqrt{n}} \leq U_{n-1}$

b) En déduire que la suite de terme général $\frac{V_n}{\sqrt{n}}$ est convergente vers 2 .

Exercice N:2 (06pts)

- 1) Soit dans \mathbb{C} l'équation (E) : $z^2 (\sqrt{2} + 2 + i\sqrt{2})z + 2(\sqrt{2} + i\sqrt{2}) = 0$.
 - a) Vérifier que 2 est une solution de (E).
 - b) Déduire l'autre solution de (E).
- 2) Dans le plan complexe muni d'un repère orthonormé direct $(0, \vec{u}, \vec{v}')$, on considère les points A et B d'affixes respectives $z_A = 2$ et $z_B = \sqrt{2} + i\sqrt{2}$.
 - a) Mettre z_B sous forme exponentielle.
 - b) Placer le point B dans le repère $(0, \vec{u}, \vec{v})$.
- 3) Soit le point C d'affixe $z_C = 2 + z_B$
 - a) Placer le point C dans le repère $(0, \vec{u}, \vec{v})$.
 - b) Montrer que le quadrilatère OACB est un losange.
 - c) Vérifier que $1 + e^{i\frac{\pi}{4}} = (e^{-i\frac{\pi}{8}} + e^{i\frac{\pi}{8}})e^{i\frac{\pi}{8}}$
 - d) En déduire que $z_C = 4\cos(\frac{\pi}{8})e^{i\frac{\pi}{8}}$.
 - e) Montrer que $\tan\left(\frac{\pi}{8}\right) = \sqrt{2} 1$.

Problème: (08pts)

Soit la fonction f définie sur $[0, +\infty[$ par : $f(x) = 1 + \frac{1}{\sqrt{1+x^2}}$.

On désigne par Cf la courbe représentative de f dans un repère orthonormé $(0, \vec{\iota}, \vec{j})$.

- I) 1)a) Montrer que pour tout x appartient à $[0, +\infty[$ on a : $f'(x) = \frac{-x}{(\sqrt{1+x^2})^3}$
 - b)Montrer que f réalise une bijection de $[0, +\infty[$ sur]1, 2] .
 - 2) a) Montrer que l'équation f(x) = x admet une unique solution α dans $[0, +\infty[$.
 - b) Vérifier que $\frac{3}{2} < \alpha < 2$.
 - 3)a) Tracer Cf et Cf^{-1} dans le même repère.
 - b) Montrer que pour tout $x \in]1,2]$ on a : $f^{-1}(x) = \frac{\sqrt{2x-x^2}}{x-1}$
 - 4) Soit la suite (U_n) définie sur $\mathbb N$ par : $U_0=1$ et $U_{n+1}=f(U_n)$.
 - a) Montrer que pour tout $n \in \mathbb{N}$ on a : $1 \le U_n \le 2$
 - b) Montrer que pour tout $x \in [1, 2]$ on $a : |f'(x)| \le \frac{\sqrt{2}}{2}$
 - c) Montrer que pour tout $n \in \mathbb{N}$: $|U_{n+1} \alpha| \le \frac{\sqrt{2}}{2} |U_n \alpha|$
 - d) En déduire que pour tout $n \in \mathbb{N}$ on a : $|U_n \alpha| \le (\frac{\sqrt{2}}{2})^n |U_0 \alpha|$
 - e) Montrer, alors que la suite (U_n) est convergente et calculer sa limite.
- II) Soit la fonction g définie sur $\left[0, \frac{\pi}{2}\right]$ par : $g(x) = \begin{cases} f(\tan(x)) & \text{si } x \in \left[0, \frac{\pi}{2}\right] \\ 1 & \text{si } x = \frac{\pi}{2} \end{cases}$
 - 1) a) Montrer que g est continue à gauche en $\frac{\pi}{2}$
 - b) Montrer que pour tout $x \in \left[0, \frac{\pi}{2}\right]$ on a : $g(x) = 1 + \cos(x)$.
 - 2) a) Montrer que g réalise une bijection de $\left[0, \frac{\pi}{2}\right]$ sur [1, 2].
 - b) Montrer que g^{-1} est dérivable sur [1,2[et que pour tout $x \in [1,2[$ on a :

$$(g^{-1})'(x) = \frac{-1}{\sqrt{2x-x^2}}$$
.

