Lycée secondaire Ibn Aarafah Ht Souk Djerba	Devoir de Synthèse n° 2	
	Durée : 3h	Année scolaire : 2019-2020
Prof : Mr . Saâfi Rochdi	4° Sciences Info.	Date : 05-03-2020

Exercice n° 1 (9 points)

A/Soit f la fonction définie sur \mathbb{R} par : $f(x) = \frac{e^x - 1}{e^x + 1}$

- 1°) a) Calculer $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to +\infty} f(x)$.
 - b) interpréter graphiquement ces résultats.
- 2°) a) Montrer que : $f'(x) = \frac{2e^x}{(e^x + 1)^2}$.
 - b) Dresser alors le tableau de variations de f sur \mathbb{R} .
- 3°) a) Montrer que f admet une fonction réciproque f^{-1} définie sur]-1,1 [.
 - b) Montrer que pour tout $x \in]-1$, 1[on a : $f^{-1}(x) = ln\left(\frac{1+x}{1-x}\right)$.
- B/ Soit U la suite définie sur $\mathbb N$ par $\begin{cases} U_0=\frac{1}{2}\\ U_{n+1}=\frac{2\;U_n}{1+(U_n)^2} \end{cases}$
 - 1°) Montrer que pour tout $n \in \mathbb{N}$ on a : $0 \le U_n < 1$.
 - 2°) a) Montrer que pour tout $n \in \mathbb{N}$ on a : $U_{n+1} U_n = \frac{U_n(1 U_n)(1 + U_n)}{1 + (U_n)^2}$.
 - b) Déduire que U est croissante et que pour tout $n \in \mathbb{N}$ on a : $\frac{1}{2} \le U_n < 1$.
 - c) Montrer que U est convergente.
 - 3°) Soit V la suite définie sur \mathbb{N} par $V_n = ln\left(\frac{1+U_n}{1-U_n}\right)$.
 - a) Montrer que V est géométrique de raison 2.
 - b) Déterminer, alors, $\lim_{n\to+\infty} V_n$.
 - c) Justifier que : $U_n = f(V_n)$.
 - d) Déterminer, alors, $\lim_{n\to+\infty} U_n$

Exercice 2:(6.5pts)

A) Soit la fonction g définie sur $-1, +\infty$ par : $g(x) = (1+x)^2 - 1 + \ln(1+x)$

1°) a) Montrer que pour tout $x \in]-1, +\infty[$ on a $g'(x) = \frac{2(x+1)^2+1}{x+1}$

b) Déduire le sens de variations de g

2°) Calculer g(0) et déduire le signe de g(x)

B) On considère la fonction f définie sur $]-1, +\infty[$ par : $f(x) = x - \frac{\ln(1+x)}{1+x}$

On note par (C_f) la courbe représentative de f dans un repère orthogonal du plan

1°) Calculer $\lim_{x \to -1^+} f(x)$ puis interpréter graphiquement le résultat

2°) a) Montrer que $\lim_{x\to +\infty} f(x) = +\infty$

b) Montrer que la droite Δ : y = x est une asymptote à (C_f)

3°) Étudier la position relative de Δ et (C_f)

4°) a) Montrer que : $f'(x) = \frac{g(x)}{(1+x)^2}$.

b) Dresser le tableau de variation de f

c) Déterminer la tangente T à (C_f) qui est parallèle à Δ .

d) Tracer Δ et (C_f)

5°) Calculer : $\int_1^e f(x)dx$.

Exercice n°3: (5 points)

Soit $I_0 = \int_1^e x dx$ et pour tout $n \in \mathbb{N}^*$, on pose : $I_n = \int_1^e x (Lnx)^n dx$.

1°) Calculer I_0 .

2°) a) A l'aide d'une intégration par parties, Calculer I_1 .

b) A l'aide d'une intégration par parties, Montrer pour tout $n \in \mathbb{N}^*$ on a $I_{n+1} = \frac{e^2}{2} - \left(\frac{n+1}{2}\right)I_n$

c) Calculer, alors, I_2 .

 3°) a) Montrer que la suite (I_n) est décroissante.

b) Montrer que : pour tout $n \in \mathbb{N}^*$ on a $0 \le I_n \le \frac{e^2}{n+1}$

c) Montrer que la suite (I_n) est convergente et calculer sa limite.

