REPUBLIQUE TUNISIENNE MINISTREDE L'EDUCATION

RRRRRR

ENS: MAB/SALAH Num: 22427502

Epreuve : Mathématiques

Section : SCIENCES ET ECH

SERIE n° :5 DURE : 3H

Chapitre n°1: SERIE DE REVISION5

EXERCICE N°1: (4 points)

1. a. Résoudre dans l'ensemble des nombres complexes l'équation :

$$z^2 - 4z + 6 = 0$$
.

b. On désigne par M_1 et M_2 les points d'affixes respectives :

$$z_1 = 2 + i\sqrt{2}$$
 et $z_2 = 2 - i\sqrt{2}$.

Déterminer la forme algébrique du nombre complexe $\frac{z_1-3}{z_1}$.

En déduire que le triangle OBM1 est un triangle rectangle.

c. Démontrer sans nouveau calcul que les points O, B, M_1 et M_2 , appartiennent à un même cercle $\mathcal C$ que l'on précisera.

Tracer le cercle \mathscr{C} et placer les points M_1 et M_2 sur le dessin.

2. On appelle f l'application du plan qui à tout point M d'affixe z associe le point M' d'affixe z' définie par l'égalité :

$$z' = z^2 - 4z + 6.$$

On désigne par Γ le cercle de centre A et de rayon $\sqrt{2}$. Ce cercle ne sera pas tracé sur le dessin.

a. Vérifier l'égalité suivante $z'-2=(z-2)^2$.

b. Soit M le point de Γ d'affixe $z=2+\sqrt{2}\,\mathrm{e}^{\mathrm{i}\theta}$ où θ désigne un réel de l'intervalle $]-\pi$; π]. Vérifier l'égalité suivante : $z'=2+2\,\mathrm{e}^{2\mathrm{i}\theta}$ et en déduire que M' est situé sur un cercle Γ' dont on précisera le centre et le rayon. Tracer Γ' sur le dessin.

3. On appelle D le point d'affixe $d=2+\frac{\sqrt{2}+\mathrm{i}\sqrt{6}}{2}$ et on désigne par D' l'image de D par f.

a. Écrire sous forme exponentielle le nombre complexe d – 2. En déduire que D est situé sur le cercle Γ .

b. À l'aide la question 2.b, donner une mesure de l'angle $(\overrightarrow{u}, \overrightarrow{AD'})$ et placer le point D' sur le dessin.

c. Démontrer que le triangle DAD' est équilatéral.

EXERCICE N°2: (6poitns)

On considère la suite numérique (v_n) définie pour tout entier naturel n par $\begin{cases} v_0 = 1 \\ v_{n+1} = \frac{9}{6 - v_n} \end{cases}$

- a. Démontrer par récurrence que, pour tout entier naturel n, $0 < v_n < 3$.
- **b.** Démontrer que, pour tout entier naturel n, $v_{n+1} v_n = \frac{(3 v_n)^2}{6 v_n}$.

La suite (v_n) est-elle monotone?

c. Démontrer que la suite (v_n) est convergente.

Partie B : Recherche de la limite de la suite (v_n)

On considère la suite (w_n) définie pour tout n entier naturel par $w_n = \frac{1}{v_n - 3}$.

- 1. Démontrer que (w_n) est une suite arithmétique de raison $-\frac{1}{3}$.
- 2. En déduire l'expression de (w_n) , puis celle de (v_n) , en fonction de n.
- 3. Déterminer la limite de la suite (v_n) .

EXERCICE N°03: (4poitns)

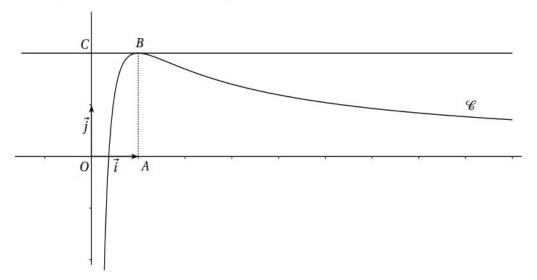
Soit l'espace muni d'un repère orthonormé (o,i,j,k), les points A (1,-2,2);

B (1,0,1) et l'ensemble S des points M(x, y, z) tels que : $x^2 + y^2 + z^2 + 2x - 4z = 0$.

- 1) Montrer que S est une sphère dont on précisera son centre I et son rayon R.
- 2) Soit P le plan passant par E(1,1,-1) et perpendiculaire à la droite (AB).
 - a- Déterminer une équation cartésienne du plan P.
 - b- Montrer que P et S sont tangents et préciser les coordonnés de leur point de contact H.
- 3) Soit Q le plan tangent à S en B.
- a- Montrer qu'une équation cartésienne du plan Q est -2x + z + 1 = 0.
- b- Montrer que les plans P et Q sont sécants et déterminer la droite Δ = P \cap Q.
- c- Montrer que $\Delta \cap S = \emptyset$.
- 4) Soit Q_m : -2x + z + m = 0 ou m est un paramètre réel.
 - a- Déterminer suivants les valeurs de $m:S\cap Q_m$.
 - b- Montrer que Q_0 coupe la sphère S suivant un cercle ζ qu'on déterminera son rayon r et son centre H'.

EXERCICE N°04: (6 points)

Sur le graphique ci-dessous, on a tracé, dans le plan muni d'un repère orthonormé $O; \vec{i}, \vec{j}$, la courbe représentative \mathcal{C} d'une fonction f définie et dérivable sur l'intervalle $O; \vec{i}, \vec{j}$, la courbe représentative $O; \vec{i}, \vec{j}$ definie et dérivable sur l'intervalle $O; \vec{i}, \vec{j}$ de l'une fonction $O; \vec{i}, \vec{i}, \vec{j}$ de l'une fonction $O; \vec{i}, \vec{i},$



On dispose des informations suivantes :

- les points A, B, C ont pour coordonnées respectives (1, 0), (1, 2), (0, 2);
- la courbe \mathscr{C} passe par le point B et la droite (BC) est tangente à \mathscr{C} en B;
- il existe deux réels positifs a et b tels que pour tout réel strictement positif x,

$$f(x) = \frac{a + b \ln x}{x}.$$

- 1. a. En utilisant le graphique, donner les valeurs de f(1) et f'(1).
 - **b.** Vérifier que pour tout réel strictement positif x, $f'(x) = \frac{(b-a)-b\ln x}{x^2}$.
 - c. En déduire les réels a et b.
- **2. a.** Justifier que pour tout réel x appartenant à l'intervalle $]0, +\infty[, f'(x)]$ a le même signe que $-\ln x$.
 - **b.** Déterminer les limites de f en 0 et en $+\infty$. On pourra remarquer que pour tout réel x strictement positif, $f(x) = \frac{2}{x} + 2\frac{\ln x}{x}$.
 - **c.** En déduire le tableau de variations de la fonction f.
- **3.** a. Démontrer que l'équation f(x) = 1 admet une unique solution α sur l'intervalle [0, 1].
 - **b.** Par un raisonnement analogue, on démontre qu'il existe un unique réel β de l'intervalle]1, $+\infty$ [tel que $f(\beta)$ = 1.
 - Déterminer l'entier n tel que $n < \beta < n + 1$.

- **a.** Justifier que cela revient à démontrer que $\int_{\frac{1}{e}}^{1} f(x) dx = 1$.
- **b.** En remarquant que l'expression de f(x) peut s'écrire $\frac{2}{x} + 2 \times \frac{1}{x} \times \ln x$, terminer la démonstration.