Limites et continuité

EXERCICE 1:

Soit la fonction
$$f: x \mapsto \frac{1-\sqrt{1-sinx}}{x}$$

- 1) Montrer que pour tout $x \in IR^*$, on a : $f(x) = \frac{\sin x}{x(1+\sqrt{1-\sin x})}$
- 2) En déduire que f est prolongeable par continuité en 0.

EXERCICE 2:

Soit la fonction
$$f: x \mapsto \frac{1-2x\sin(3x)}{x^2+1}$$

Montrer que pour tout réel x< 0, on a :
$$\frac{2x+1}{x^2+1} \le f(x) \le \frac{1-2x}{x^2+1}$$
. En déduire $\lim_{x \to -\infty} f(x)$

EXERCICE 3:

Soit
$$f: x \mapsto \frac{1}{x} \cdot \sin x + 2$$
 ; $x \neq 0$

- 1) Montrer que pour tout $x\neq 0$ on $a: |f(x)-2| \leq \frac{1}{x}$
- 2) En déduire $\lim_{x \to -\infty} f(x)$

EXERCICE 4:

Soit les fonctions $f: x \mapsto \frac{1}{x}$ et $g: x \mapsto \sqrt{x+1}$

- 1) Calculer $f \circ g$ (3) ; $g \circ f$ (-2)
- 2) Définir chacune des fonctions f o g et g o f. 3) Calculer les limites suivantes : $\lim_{x\to 0^+} g$ o f (x) ; $\lim_{x\to -\infty} g$ o f (x) ; $\lim_{x\to (-1)^+} g$ (x)

EXERCICE 5:

Dans chacun des cas suivants, déterminer deux fonctions u et v telles que f = u o v:

a)
$$f(x) = \sin(\frac{\pi}{x} + 1)$$

b)
$$f(x) = \frac{3\sqrt{x}+1}{\sqrt{x}-4}$$

a)
$$f(x) = \sin(\frac{\pi}{x} + 1)$$
 b) $f(x) = \frac{3\sqrt{x} + 1}{\sqrt{x} - 4}$ c) $f(x) = \sqrt{1 + \cos x} \, d$) $f(x) = |x^2 - x^4|$

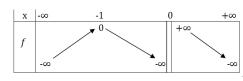
EXERCICE 6:

Soit les fonctions $f: x \mapsto \frac{1}{x-3}$ et $g: x \mapsto \sqrt{x+3}$

- 1) Montrer que la fonction gof est continue en 2.
- 2) Montrer que la fonction *gof* est continue sur $[3,+\infty[$.

EXERCICE 7:

Voici le tableau de variation d'une fonction f définie et continue sur IR $\{0\}$.



1) Déterminer chacune des limites suivantes :

 $\lim_{x \to -\infty} f(-1 + \frac{1}{x^2}) \; ; \; \lim_{x \to +\infty} f\left(\frac{1}{x}\right) \; ; \; \lim_{x \to +\infty} f(\sqrt{x}) \; ; \; \lim_{x \to -\infty} f\left(x^3 + \frac{1}{x+1}\right) \; ; \; \lim_{x \to 0^+} \sqrt{1 - f \circ f(x)} \quad \text{et } \lim_{x \to -1} \frac{1}{f(x)}$ 2) Déterminer l'image par f de chacun des intervalles suivants :

- $]-\infty, -1]$, $]-\infty, 0[$ et $]0, +\infty[$
- 3) a) Montrer que l'équation f(x) = 0 admet deux solutions dans IR\{0}
 - b) En déduire le tableau signe de f(x) pour tout $x \in \mathbb{R} \setminus \{0\}$.

EXERCICE 8:

Soit f la fonction définie sur IR par : $f(x) = \begin{cases} x^3 + x + 1 & \text{si } x \le 0 \\ 1 + x \sin\left(\frac{\pi}{x}\right) & \text{si } x > 0 \end{cases}$

- 1) a- Montrer que, pour tout x > 0, $1-x \le f(x) \le 1+x$
- b- Etudier alors la continuité de f en 0
- 2) a- Montrer que l'équation f(x) = 0 admet dans $]-\infty,0[$ une unique solution α b- Vérifier que $-0.7 < \alpha < -0.6$
- 3) a- Montrer que la fonction h : $x \mapsto \sin\left(\frac{\pi}{x}\right)$ est continue sur $]0,+\infty[$ b- Montrer que la fonction f est continue sur IR.

EXERCICE 9:

Soit la fonction f définie sur IR par : $f(x) = \begin{cases} 1 + \frac{1 - \cos x}{x^2} & \text{si } x \in]-\infty, 0[\\ 2x + \sqrt{x^2 + \left(\frac{9}{4}\right)} & \text{si } x \in [0, +\infty[$

- 1) Montrer que pour tout x < 0, on : $0 \le f(x) 1 \le \frac{2}{x^2}$. En déduire $\lim_{x \to -\infty} f(x)$
- 2) a- Calculer $\lim_{x \to +\infty} f(x)$; $\lim_{x \to +\infty} \frac{f(x)}{x}$ et $\lim_{x \to +\infty} (f(x) 3x)$
 - b- Etudier la continuité de fen 0
- 3) a- Justifier la continuité de f sur [0,+∞[
 - b- Montrer que f'est strictement croissante sur $[0,+\infty[$. Déterminer f([0,2])
 - c- En déduire que l'équation 2f(x)-7=0 admet une unique solution $\alpha \in [0,2]$.

EXERCICE 10:

- Cf admet au voisinage de :
 - ∞ une asymptote d'équation y = 0.
 - +∞une branche infinie parabolique de direction la droite d'équation x = 0
- 1) Déterminer : $\lim_{x \to \infty} f(x)$, $\lim_{x \to \infty} \frac{f(x)}{f(x)}$ 2) Déterminer : f(IR) et $f \circ f(IR)$
- 3) a- Déterminer graphiquement le domaine de définition de f,
 - de $u = \frac{1}{f}$ et de $v = \sqrt{f}$.
 - b- La fonction u est elle prolongeable par continuité en 2?
- 4) On considère la fonction $g: x \mapsto \frac{\sqrt{x^2 + 1}}{x}$ et la fonction $h = g \circ f$ a – Montrer que h est continue sur $]2,+\infty[$.
 - b Déterminer $\lim_{x\to +\infty} h(x)$ et h(3).
- 5) Soit k la fonction définie sur \mathbb{R} , par $k(x) = \begin{cases} f(x) \\ x^2 \left(1 \cos\left(\frac{\pi}{x}\right)\right) \end{cases}$
 - a Montrer que pour tout x < 0, on a $0 \le k(x) \le 2x^2$
 - b En déduire que k est continue en 0.
 - c Montrer que $\lim_{x\to -\infty} k(x) = \frac{\pi^2}{2}$. Interpréter graphiquement le résultat.