Lycée Cité El-amel Sola Saidi & Mokhtar Ouardani

Classes: 4^{ème} Maths 1 & 2

Devoir de contrôle n°1 (Mathématiques)

Année scolaire : 2016/2017

Date : Octobre Durée : 2 heures

Exercice n° 1 (4 points)

Soit $\theta \in \left]0, \frac{\pi}{2}\right[$ et l'équation (E_{θ}) : $z^2 - z + e^{i2\theta} - ie^{i\theta} = 0$.

- 1) a- Vérifier que $(2ie^{i\theta} + 1)^2 = -4e^{i2\theta} + 4ie^{i\theta} + 1$.
 - b- Résoudre dans \square l'équation (E_{θ}).
- 2) On donne les nombres complexes: $z_1 = 4\sqrt{2}(1+i)$, $z_2 = -ie^{i\theta}$ et $z_3 = 1+ie^{i\theta}$.
 - a- Ecrire les nombres complexes z_1 , z_2 et z_3 , sous la forme exponentielle.
 - b- Résoudre dans \Box l'équation (E') : $(z + 2i)^3 = 4\sqrt{2}(1+i)$.

Exercice n° 2 (7 points)

Dans le plan complexe rapporté à un repère orthonormé direct (O, \vec{u}, \vec{v}) .

On considère le point A d'affixe 2, le point B d'affixe -3 et l'application : f : P \ {A} dans P

qui à tout point M d'affixe z on associe le point M d'affixe z' avec $z = \frac{2iz + 6i}{z - 2}$.

- 1) a- Résoudre dans \Box l'équation (E) : $z^2 2(1+i)z 6i = 0$.
 - b- En déduire les points invariants par f.
- 2) Montrer que:

a)
$$OM' = 2 \frac{BM}{AM}$$
.

b)
$$(\overrightarrow{u}, \overrightarrow{CM'}) \equiv \frac{\pi}{2} + (\overrightarrow{AM}, \overrightarrow{BM})[2]$$
.

- 3) a- Déterminer l'mage par f de la médiatrice de [AB].
 - b- Montrer que si M est un point du cercle ζ de diamètre [AB] privé de A et B alors M appartient à la droite (O, \vec{u}) .

Exercice n° 3 (9 points)

On considère la suite réelle (u_n) définie sur \square * par : $u_n = \frac{n}{a^n}$ où a est un réel strictement supérieure à 2.

- 1) a- Montrer que pour tout $n \in \square^*$, $u_{n+1} \le \frac{2}{a}u_n$.
 - b- En déduire pour tout $n \in \square^*$, $u_n \le \frac{1}{2} \cdot \left(\frac{2}{a}\right)^n$.
 - c- Déterminer alors $\lim_{n \to +\infty} u_n$.
- 2) Soit la suite réelle (S_n) définie sur \square * par : S_n = $\sum_{k=1}^{n} u_k$.
 - a- Montrer que (S_n) est une suite croissante.
 - b- Montrer que pour tout $n \in \square^*$, $S_n \le \frac{1}{a-2}$.
 - c- En déduire que la suite (Sn) converge vers un réel $\,\ell\,.$
 - d- Montrer que pour tout $n \in \square^*$, $aS_{n+1} S_n = 1 + \frac{1 \left(\frac{1}{a}\right)^n}{a 1}$.
 - e- Montrer que alors que $\ell = \frac{a}{(a-1)^2}$.