Ministere de l'education Direction régionale de l'education Monastir Lycée Ibn khouldoun Jemmel

Mai 2017

Section: Sc.exp

Bac Blanc

Proposé par : Mr Afli Ahmed

Mr Abroug Fethi

Durée de l'epreuve : 3 heures

Coefficient: 3

Les élèves doivent traiter les quatre exercices

La qualité de la rédaction, la clarté et la précision des raisonnements

entreront pour une part importante dans l'appréciation des copies

Exercice 1:

Soit l'équation différentielle (E) : $y' + y = e^{-x}$.

- 1.) a. Soit h la fonction définie sur IR par $h(x) = axe^{-x}$. Déterminer a pour que h soit solution de (E).
 - b. Résoudre l'équation différentielle (E_0) : y' + y = 0.
 - c. Montrer qu'une fonction f est solution de (E), si et seulement si, f h est solution de (E_0) .
 - d. Résoudre alors l'équation (E).
- 2.) Soit g une solution de l'équation (E).

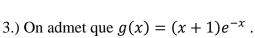
Parmi les deux représentations graphiques suivantes, une représente la fonction g et la deuxième représente sa fonction dérivée g '.

On note:

Chaque courbe admet:

- Au voisinage de $-\infty$ une branche parabolique de direction $(0, \vec{j})$.
- Au voisinage de $+\infty$, l'asymptote horizontale $(0, \vec{i})$.
- (C_1) et (C_2) se coupent au point $A(-\frac{1}{2}; \frac{\sqrt{e}}{2})$

Déterminer la courbe associée à fonction g et celle à g ',en expliquant la raison de votre choix.



Soit $k \ge 0$ et A(k) l'aire de la partie du plan délimitée par les courbes (C_1) , (C_2) et la droite d'équation x = k. Déterminer A(k), puis montrer que $\lim_{k \to +\infty} A(k) = 2\sqrt{e}$.

Exercice 2:

Soit f la fonction définie sur IR par $f(x) = x - 2 + 2e^{-x}$. On désigne par (C) sa courbe représentative dans un repère orthonormé (o, \vec{i} , \vec{j}) (unité graphique 2cm)

- 1) a. Justifier que f est dérivable sur IR et que $f'(x) = 1 2e^{-x}$
 - b. Dresser le tableau de variation de f
 - c. Montrer que la droite Δ : y = x 2 est une asymptote oblique au voisinage de $(+\infty)$
 - d. Calculer $\lim_{x\to-\infty} \frac{f(x)}{x}$. Interpréter graphiquement le résultat obtenu.
- 2) a. Montrer que l'équation f(x) = 0 admet une seule solution α sur $[ln2 ; +\infty[$ et que $\alpha \in]1;2[$ (On désigne par B le point de (C) d'abscisse α)
 - b. Déduire que $e^{-\alpha} = 1 \frac{\alpha}{2}$
- 3.) Tracer Δ et (C).
- 4.) On désigne par A (α) l'aire de la région du plan limitée par (C) et les droites d'équations $x=0, x=\alpha$ et y=0 Montrer que A (α) = 2(2 α α^2) cm².

- 5.) On désigne par V (α) le volume de révolution de solide engendré par la rotation de l'arc \widehat{OB} de la courbe (C) autour de l'axe des abscisses.
 - a. Soit $I(\alpha) = \int_0^{\alpha} (x-2)e^{-x} dx$

Montrer à laide d'une intégration par partie que $I(\alpha) = \frac{\alpha^2 - 3\alpha}{2}$

b. Calculer alors $V(\alpha)$.

Exercice 3:

Partie 1:

Un test de dépistage d'une maladie responsable à la disparition des lapins a fourni les renseignements suivantes :

- 70% des lapins sont malades.
- Si un lapin est malade, le test est positif dans 93% des cas.
- Si un lapin n'est pas malade, le test est positif dans 5% des cas.

On note: M: « le lapin est malade » et P: « le test est positif ».

- 1.) a. Donner l'arbre de probabilité qui modélise cette situation.
 - b. Déterminer la probabilité que le test est positif.
- 2.) Sachant que le test est positif, déterminer la probabilité qu'un lapin soit malade.
- 3.) On choisit au hasard 5 lapins. Déterminer la probabilité que 4 lapins ont un test négatif.

Partie 2:

On suppose qu'un virus responsable à cette maladie a une durée de vie T exprimée en heures qui suit une loi exponentielle de paramètre λ .

La durée moyenne de vie d'un virus est donnée par $\lim_{t\to +\infty} \int_{0}^{t} \lambda x e^{-\lambda x} dx$.

- 1.) a. A l'aide d'une intégration par parties, Montrer que $\lim_{t \to +\infty} \int_{0}^{t} \lambda x e^{-\lambda x} dx = \frac{1}{\lambda}$
 - b. Dans la suite, la durée moyenne de vie d'un virus étant de 100 heurs.
 Déterminer la probabilité que le virus persiste dans l'organisme du lapin plus que 4 jours.
 - c. Sachant que le virus a persisté plus que 4 jours, quelle est la probabilité qu'il persiste moins qu'une semaine.
- 2.) a. Déterminer, en heure, le temps t tel que $p(T \ge t) = p(T \le t)$
 - b. Définir puis représenter la fonction de répartition de T.

Exercice 4:

Le tableau suivant donne la population d'une ville nouvelle entre les années 1985 et 2015.

Année	1985	1990	1995	2000	2005	2010	2015
Rang de l'année x	0	5	10	15	20	25	30
Population en milliers habitants y	18	21	25	30	36	42	50

- 1.) a. Calculer la moyenne \bar{X} et l'écart-type σ_X de la variable X.
 - b. Calculer la moyenne \bar{Y} et l'écart-type σ_Y de la variable Y.
 - c. Calculer le coefficient de corrélation linéaire de la série double (X,Y).
- 2.) a. Déterminer une équation de la droite d'ajustement affine de y en x par la méthode des moindres carrées. (Les coefficients seront arrondis au millième)
 - b. Déduire de cet ajustement une estimation de la population en 2013, à un millier prés.
- 3.) L'allure du nuage de la série double (X,Y) incite à chercher un ajustement par une fonction f définie sur $[0;+\infty[$ solution de l'équation différentielle y'=0.034y tels que f(0)=18
 - a. Montrer $f(x) = 18e^{0.034x}$.
 - b. Déduire de cet ajustement une estimation de la population en 2013, à un millier prés.
 - c. La population en 2013 était de 55 milliers. Lequel des deux ajustements vous semble plus pertinent ?

 Justifier votre choix
 - d. Calculer la valeur moyenne de la fonction f sur [0; 30]; on donnera le résultat arrondi au dixième.
 - e. Déterminer l'année au cours de laquelle la population atteint cette valeur moyenne.

Bon Travail et

Excellente Réussite au Baccalauréat