L-S-IBN SINA

2 heures

Devoir de contrôle N°2

PROF: Meddeb -A

Class: 4sc-exp

Exercice N°1: (2 points)

1) Calculer a=
$$(\sqrt[3]{5\sqrt{5}})^2$$

$$b = \frac{\sqrt[6]{3^{12}}}{\sqrt[5]{9^5}}$$

2) Déterminer la fonction dérivée f ' de la fonction f définie sur]0 ; $+\infty$ [dans chacun des cas suivants :

a)
$$f(x) = \sqrt[3]{x}$$

b)
$$f(x) = \sqrt[3]{x^2}$$

Exercice N°2: (7 points)

Soit f une fonction définie sur [0; + ∞ [par f(x)= $\frac{2\sqrt{x}}{1+x}$

- A- 1) Calculer $\lim_{x \to +\infty} f(x)$; interpréter graphiquement le résultat.
 - 2) Montrer que f est dérivable sur]0 ; + ∞ [et que f '(x)= $\frac{1-x}{\sqrt{x}(1+x)^2}$
 - 3) Dresser le tableau de variation de f.
- B- 1) Montrer que f admet une unique primitive F sur $[0; +\infty[$ qui s'annule en 0.
 - 2)Soit G la fonction définie sur [0 ; $\frac{\pi}{2}$ [par : G(x)=F (tan²x).
 - a) Montrer que G est dérivable sur [0 ; $\frac{\pi}{2}$ [.
 - b) Montrer que G(x)= 4 tan x 4 x ; $x \in \left[0; \frac{\pi}{2}\right[$.
 - c) Calculer $\lim_{x \longrightarrow \frac{\pi}{2}} G(x)$; déduire $\lim_{x \longrightarrow +\infty} F(x)$
 - 3)a) Dresser le tableau de variation de F.
 - b) Montrer que F réalise une bijection de $[0; +\infty]$ [sur un intervalle que l'on précisera.
- C- 1) Montrer que pour tout $n \in IN$ il existe un unique réel α_n tel que F (α_n) = n.
 - 2) Montrer que $\alpha_{\scriptscriptstyle n}$ est une suite croissante et divergente.

Exercice N°3: (6points)

Soit h une fonction définie sur]0; 1] par : h (x)= $\frac{1}{1-\cos \pi x}$.

- 1) Montrer que h est dérivable sur]0 ; 1] et que h'(x) = $\frac{-\pi \sin \pi x}{(1 \cos \pi x)^2}$
- 2) Dresser le tableau de variation de h .
- 3) Tracer la courbe de h dans un repère orthogonal (o; I; J).
- 4) a) Montrer que h réalise une bijection de] 0; 1] sur un intervalle que l'on précisera.
 - b) Montrer que h⁻¹ est dérivable sur] $\frac{1}{2}$; + ∞ [; et que (h⁻¹) ' (x)= $\frac{-1}{\pi x \sqrt{2x-1}}$
 - c) Tracer dans le même repère la courbe de h⁻¹.
- 5) prouver que $\int_{\frac{1}{2}}^{1} \frac{dx}{\pi x \sqrt{2x-1}} = \frac{1}{2}$

Exercice N°4: (5 points)

l'espace étant rapporté à un repère orthonormé directe (O;I; J; K); on considère les points

A (2;0;0); B(0;4;0) et C(0;0;4)

- 1) a) vérifier que les points O; A; B et C ne sont pas coplanaires.
 - b) calculer le volume du tétraèdre OABC.
 - c) Déduire la distance du point O et le plan (ABC).
- 2) on désigne par I et J les milieux respectifs des segments [AB] et [BC] et par P l'ensemble de points M de l'espace tels que MI=MJ
 - a) Montrer que P est le plan d'équation 2x 4z + 3 = 0.
 - b) Montrer que (OC) coupe le plan P en un point K dont on déterminera les coordonnées.
- 3) Soit S l'ensemble de points M(x; y; z) de l'espace tels que : $x^2 + y^2 + z^2 \frac{3}{2}z 5 = 0$
 - a) Montrer que S est la sphère de centre K dont on déterminera le rayon.
 - b) Vérifier que les points I et J appartiennent à la sphère S.
 - c) Déduire l'intersection du sphère et le plan P.