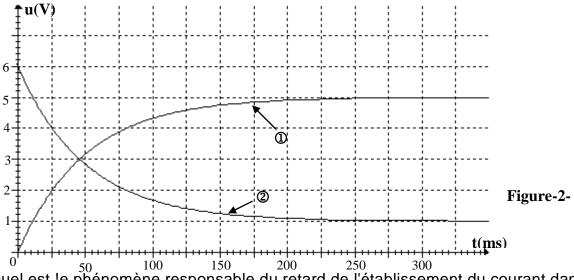

Oscillateur électrique libre amorti

Exercice N°3 (RL et RLC libre)

Le circuit électrique de la figure -1- comprend.

- *Un générateur de f.é.m E et de résistance interne négligeable.
- *Un condensateur de capacité $C = 5 \mu F$.
- *Une bobine d'inductance L et de résistante r.
- *Un résistor de résistance R.


Figure-1-

Partie A: Etablissement d'un courant dans un circuit RL L'interrupteur K_3 ouvert, on ferme K_1 et K_2 :

- 1- Etablir l'équation différentielle en i(î) du dipôle RL.
- 2- Vérifier que i(t) = $\frac{E}{R+r}$.[1 $e^{-\frac{t}{r}}$] est une solution de cette équation différentielle pour une

expression de τ que l'on déterminera en fonction des caractéristiques du dipôle RL.

- 3-a-Déterminer les expressions des tensions u_R(t) aux bornes du résistor et u_B(t) aux bornes de la bobine
- b- Par un système d'acquisition adéquat, on trace les courbes de u_R(t) et u_B(t) de la figure 2. Identifier alors les deux courbes correspondantes.

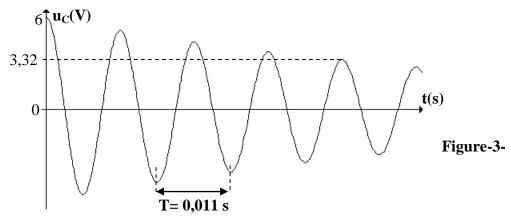
- c- Quel est !e phénomène responsable du retard de l'établissement du courant dans le circuit ?
- d- Quel est l'élément du circuit responsable de ce phénomène ?
- e- Déterminer tes valeurs de la résistance r et de la f.e.m. E du générateur sachant que R=10Ω
- **f-** Déterminer graphiquement !a constante de temps τ et en déduire la valeur de L.

Partie B: Oscillations libres amorties.

1-1ère Expérience

L'interrupteur (K_2) est ouvert, (K_1) et (K_3) fermés :

le condensateur se charge. Suite à cette charge, la tension aux bornes du condensateur est u_{C0}=E et l'énergie emmagasinée est W₀


- **a-** Calculer W₀ sachant que C = $5 \cdot 10^{-6}$ F.
- b- Déterminer la charge Qo portée par l'armature positive du condensateur

www.devoir@t.ne

2-2ème Expérience

Le condensateur étant chargé, on ouvre (K_1) et à l'instant t=0, on ferme k_2 (en laissant k_3 fermé) des oscillations électriques libres s'établissent dans le circuit (R+ r, L, C).

- a- Etablir l'équation différentielle reliant uc(t) et ses dérivées
- b- Exprimer l'énergie totale Etot du circuit (R+ r, L, C) en fonction de L,C , q et i
- c- En déduire que $\frac{dE_{tot}}{dt}$ = -(R+r).i²
- d- Conclure
- 3- Un dispositif approprié permet de visualiser la courbe donnant la variation au cours du temps de la tension $u_c(t)$ aux bornes du condensateur et correspondante à la figure-3-

a- De quel phénomène s'agit-il

b-La résistance totale du circuit étant faible, on admet que la pseudo période T est égale à la période propre T_0 de l'oscillateur (L,C) retrouver la valeur de L.

c- Calculer l'énergie électrique dissipée par effet joule entre les instants t =0s et t = 4T