lycéeMahmoud ElfAHS	Elmeraadi	DEVOIR DE CONTROLE N°3	Prof : Ben HMIDENE Tarak
2013- 2014		MATHEMATIQUES	4math Durée : 2 heure <i>r</i>

Exercice n°1(3points)

Répondre par vrai ou faux en justifiant

1) Soit F la fonction définie sur
$$[\pi; 2\pi]$$
 par $F(x) = \int_0^{1+\cos x} \sqrt{1-(1-x)^2} dx$ alors $F'(x) = -\sin^2 x$

2) La moyenne de la fonction f définie par
$$f(x) = \frac{\ln^2 x}{x}$$
 sur [1; e] est égale à $\frac{1}{3(e-1)}$

3) Soit f une fonction positive sur R alors la suite $u_n = \int_n^{n+1} f(x) dx$ est une suite croissante

Exercice n°2(6points)

L'espace est rapporté à un repère orthonormé direct $(o, \vec{i}, \vec{j}, \vec{k})$. On considère les points A(1,1,1); B(2,-1,0); C(-1,-1,1) et I(1,1,3).

- 1) a) Montrer que les points A, B et C déterminent un plan P.
 - b) Montrer qu'une équation cartésienne de P est x y + 3z 3 = 0.
 - c) Calculer le volume du tétraèdre IABC.
- 2) Soit (S) l'ensemble des points M(x; y; z) tel que $x^2 + y^2 + z^2 2x 2y 6z 5 = 0$
 - a)Montrer que (S) est une sphère de centre I et de rayon R à déterminer
 - b) Montrer que (S) et P sont sécants suivant un cercle (C)

Déterminer son rayon r et les coordonnées du centre H.

- 3) Soit h l'homothétie de centre I et de rapport 2
 - a)d Déterminer l'expression analytique de h
 - b) Déterminer une équation cartésienne du plan P' image de P par h
 - c)) Déterminer une équation cartésienne de S' = h(S)

Exercice n° 3 (5 points)

Une maison d'édition a ouvert le 1° janvier 2010 sur internet un site de vente par correspondance.

Le tableau suivant donne l'évolution du nombre de livres vendus par mois en milliers.

mois	Janvier2010	Janvier2011	Juillet2011	Janvier2012	Juillet2012
Rang du mois X	1	13	19	25	31
Nombres de livres Y	3.2	4.5	5.5	7.1	8

- 1) Représenter le nuage des points (unite graphique 1cm \rightarrow 2mois en abscisse et 1cm \rightarrow 500 livres en ordonnée
- 2) L'allure de nuage permet d'envisager un ajustement exponentielle pour cela on pose Z= In(Y)

Copier et compléter le tableau suivant

Rang du mois	1	13	19	25	31
Z=In (Y)					

3) Ecrire une équation de la droite de régression de Z en X

4) En déduire une relation entre Y et X

5)a)Donner une estimation du nombre des livres vendus en janvier 2013

b)A)partir de quel mois le nombre de livres vendus dépasse 13000

Exercice n° 4 (6 points)

Soit f la fonction définie sur R par $f(x) = \frac{e^{-2x}}{1+e^{-x}}$

1)a)Calculer $\lim_{x\to +\infty} f(x)$

b) Vérifier que
$$f(x) = \frac{1}{e^{2x} + e^x}$$
 puis calculer $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to -\infty} \frac{f(x)}{x}$

2) Dresser le tableau de variation de f

3)a)Montrer que f réalise une bijection de R sur un intervalle J à préciser

b) Tracer (Cf)et (C f^{-1})dans le même repère

4) Soit la suite
$$(U_n)$$
 définie sur IN^* par $U_n = \int_0^1 \frac{e^{-nx}}{1 + e^{-x}} dx$.

a) Calculer U_1 .

b) Montrer que (U_n) est décroissante et en déduire quelle est convergente

5) Montrer que pour tout
$$n \in IN^*$$
, $U_n + U_{n+1} = \frac{1 - e^{-n}}{n}$

6) En déduire l'aire du domaine limité par (Cf) et les droites d'équations x=0; x=1 et y=0