Devoir de Synthèse n°2

Classe 4Sc.Exp

Exercise 1: (3 points)

Recopier l'unique bonne réponse et sans justification. (Remplir l'annexe page 3)

Question $n^{\circ}1$:

$$\int_{\sqrt{e}}^{e} \frac{1}{x \ln(x)} dx \text{ est égal à:} \qquad a) - \ln(2) \qquad b) \ln(2) \qquad c) e - \sqrt{e}$$

c)
$$e - \sqrt{e}$$

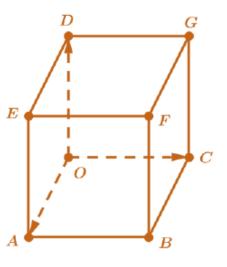
Question n°2:

$$\lim_{x \to +\infty} x \ln\left(1 + \frac{2}{x}\right) =$$

a) 2 b)
$$\ln(2)$$
 c) $+\infty$

Question n°3:

Dans la figure ci contre OABCDEFG est un cube d'arête 1 On munit l'espace du repère $(O, \overline{OA}, \overline{OC}, \overline{OD})$


i. Le vecteur $\overrightarrow{AE} \wedge \overrightarrow{AB}$ est égal à :

a) \overrightarrow{AF}

 $b)\vec{0}$

 $c)\overline{AO}$

e équation du plan (ABD) est : a) x+z-1=0 b) -x+z+1=0 c) x-z=1ii. Une équation du plan (ABD) est :

Exercice 2: (6 points)

L'espace étant rapporté à un repère orthonormé $(0; \vec{\imath}, \vec{\jmath}, \vec{k})$

On désigne par S l'ensemble des points M(x, y, z) tels que : $x^2 + y^2 + z^2 - 4y - 5 = 0$

- 1./ Montrer que \mathbf{S} est une sphère de centre $\mathbf{W}(0, 2, 0)$ et de rayon 3.
- 2./ Soit **P** le plan dont une équation cartésienne est : 2x 2y + z 2 = 0

Déterminer la position relative de S et P. Caractériser $S \cap P$.

- 3./ Soit P_m le plan dont une équation cartésienne est : 2mx + (1 2 m) y + mz + 1 2 m = 0
 - a. Soit D la droite dont une représentation paramétrique est : $\begin{cases} x = \lambda \\ y = -1 \\ z = -21 \end{cases}$; $\lambda \in \mathbb{R}$

Vérifier que la droite \mathbf{D} est incluse dans P_m .

- b. Calculer la distance $d(W,P_m)$ du point W au plan P_m .
- c. Déterminer m pour que le plan P_m soit tangent à la sphère S . Préciser les coordonnées du point de contact.

Exercice 3: (6 points)

Soit la fonction f définie sur $[0, +\infty [par : \begin{cases} f(x) = x + x(lnx)^2 \\ f(0) = 0 \end{cases}$. On désigne par (C)

sa courbe représentative dans un repère orthonormé(0; i,j) (unité: 4cm).

- 1. /a. Montrer que f est continue à droite en 0.
 - b. Etudier la dérivabilité de f à droite en 0. Interpréter graphiquement ce résultat.
 - c. Montrer que f est dérivable sur $]0, +\infty[$ et que $f'(x) = (1 + lnx)^2.$
 - d. Dresser le tableau de variations de f.
- 2. /a. Ecrire une équation de la tangente T à (C) au point d'abscisse 1 .
 - b. Etudier la position relative de (C) et T.
 - c. Etudier la branche infinie de (c) au voisinage de +∞
 - d. Construire T et (C).
- 3. / Soit la suite $(I_n)_{n\geq 1}$ définie par $I_n = \int_1^e x(Lnx)^n dx$.
 - a. A l'aide d'une intégration par partie Calculer I_1 .
 - b. Montrer que pour tout $n \ge 1$ on $a : I_{n+1} = \frac{e^2}{2} \frac{n+1}{2}I_n$.
 - c. Déduire I₂
- 4. / Soit \mathcal{A} l'aire de la partie du plan limitée par la courbe (C) et les droites d'équations x=1, x=e et y=0. Calculer \mathcal{A} en cm^2 .

Exercice 4: (5 points)

Soit la fonction f définie sur $]0, +\infty[$ par f(x) = (a + bln(x)) ln(x) ou a et b sont deux réels.

La figure (C) (*dans l'annexe page 3*) est la représentation graphique de la fonction f, relativement à un repère orthonormé (0; î, ĵ)

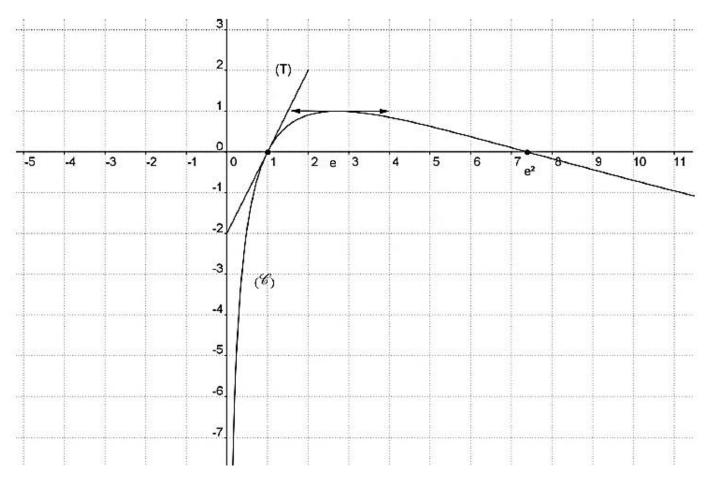
- (C) admet au voisinage de $+\infty$ une branche parabolique dont la direction est celle de la droite $(0,\vec{\iota})$
- 1. /Par une lecture graphique déterminer :

a.
$$f'(1)$$
, $f'(e)$ $f(e^2)$ et $\lim_{x\to+\infty} \frac{f(x)}{x}$

- b. Dresser le tableau de variation de f
- 2. /a. Calculer f'(x) en fonction de a et b
 - b. Déterminer a et b
- 3. /Soit E la partie du plan limitée la courbe (C) et les droites d'équations respectives y=0, x=1 et x=e. On désigne par A l'aire (en unité d'aire) de E.
 - a. Hachurer E
 - b. Soit M et N les points de la courbe d'abscisses respectives 1 et e et les points P et Q de coordonnées respectives (1,1) et (e,0)

Calculer l'aire du rectangle MPNQ et l'aire du triangle MNQ

c. En déduire que $\frac{e}{2} < A < e$


Nom et Prénom:

Annexe à remplir et à rendre avec la copie

Exercice 1:

questions		réponses
1		
2		
3	i	
	ii	

Exercice 4:

