Classe 3 Maths

Devoir de Synthèse N°1

Bouzouraa Chaouki

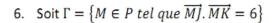
Exercice N°1

- I) Cocher la bonne réponse
 - 1. Soit x un réel on pose $A = \sin(5\pi + x) + \cos(x \frac{45\pi}{2})$
 - a) A=2sin(x)

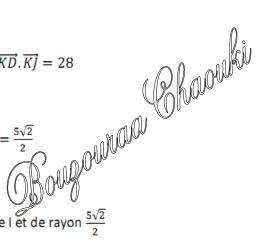
- c) A=sin x +cos x
- 2. Soit f une fonction définie sur IR * vérifiant $\lim_{x \to \infty} f(x) = 2$ et $\lim_{x \to \infty} f(x) = 2$
 - a) f est prolongeable par continuité en 0
- b) *f* est une fonction continue en 0
- c) f(0)=2
- 3. Le plan est orienté dans le sens direct. Soit A,B et C trois points distincts si on a Alors une mesure de AC, BA
 - a) $\pi \alpha$
- b) $\pi + \alpha$

c) $\alpha - \pi$

- II) Répondre par vrai ou faux en justifiant
 - 1. L'équation (E): $x^3 + x 1 = 0$ admet au moins une solution a dans [0,1]
 - 2. Soit la fonction f définie sur IR par $f(x) = \frac{x}{\sqrt{x^2 + 4}}$. La droite D : y = 1 est une asymptote à la courbe de f au voisinage de −∞
 - 3. Soit f une fonction définie sur [1,3] et f([1,3]) = [1,3] alors f est continue sur [1,3].


Exercice N°2

Dans le plan P orienté dans le sens direct. On considère un carré ABCD tel que AB=3 et $(\overline{AD}, \overline{AB}) \equiv \frac{\pi}{2} [2\pi]$


ABK un triangle rectangle en B direct tel que BK= 2. Soit le point J de [CD] tel que JC=1

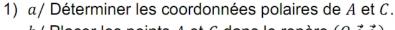
- 1. Montrer que $\overrightarrow{AD} \cdot \overrightarrow{AK} = -6$ et $\overrightarrow{ID} \cdot \overrightarrow{AK} = -6$
- En déduire que (AJ) est perpendiculaire à (AK)
- Calculer DK et KJ
- 4. Montrer que $DJ^2 = DK^2 + KJ^2 2\overrightarrow{KD} \cdot \overrightarrow{KJ}$ en déduire $\overrightarrow{KD} \cdot \overrightarrow{KJ} = 28$
- Soit I le milieu de [JK]

Montrer que $DJ^2 + DK^2 = 2DI^2 + \frac{JK^2}{2}$ en déduire que $DI = \frac{5\sqrt{2}}{2}$

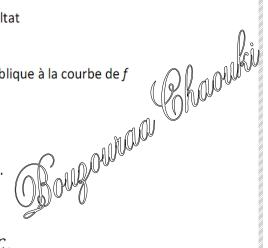
- a) Montrer que l'ensemble Γ est le cercle de centre l'et de rayon $\frac{5\sqrt{2}}{2}$
- b) Construire Γ

 \overrightarrow{AB} , \overrightarrow{AC} $= \alpha [2\pi]$

Exercice N°3


Soit la fonction f définie sur IR par $\begin{cases} f(x) = \frac{1-3x}{x-3} & \text{si } x < 2 \\ f(x) = \sqrt{x^2-3} + x + 2 & \text{si } x \geq 2 \end{cases}$ et \mathcal{C}_f sa courbe dans un repère orthonormé $\left(O, \overrightarrow{i}, \overrightarrow{j}\right)$ du plan.

- 1. a) Calculer $\lim_{x \to -\infty} f(x)$. Interpréter graphiquement le résultat
 - b) Calculer $\lim_{x \to +\infty} \frac{f(x)}{x}$ et $\lim_{x \to +\infty} f(x) 2x$
 - c) Montrer que la droite Δ : y=2x+2 est une asymptote oblique à la courbe de f
- 2. a) Montrer que f est continue en 2


Exercice N°4

Le plan est rapporté à un repère orthonormé direct $(0, \vec{\iota}, \vec{j})$.

On considère les points $A(1, \sqrt{3})$ et $C(-\sqrt{3}, 1)$.

- b/ Placer les points A et C dans le repère $(0, \vec{i}, \vec{j})$.
- 2) Soit *B* le point défini par : $\overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{OC}$.
 - a/ Quelle est la nature du quadrilatère OABC ? Justifier.
 - b/ Déterminer les coordonnées cartésiennes et les coordonnées polaires de B.
 - c/ En déduire : $\cos \frac{7\pi}{12}$ et $\sin \frac{7\pi}{12}$.

