4 ^{éme} Année / Section: Mathématiques	Série de révision
Prof : Karmous abdelhamid	Deplacements et antideplacements

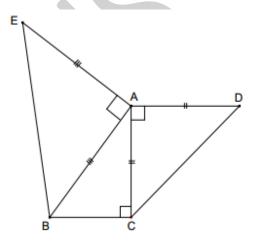
Exercice 1

On considère un triangle ABC rectangle en C tel que (\overrightarrow{CA} , \overrightarrow{CB}) $\equiv \frac{\pi}{2}[2\pi]$ et les triangles ACD et ABE isocèles et rectangles en A . On désigne par I , J et K les milieux respectifs de [CD] , [AC] et [AD] .

- a/Montrer qu'il existe un seul déplacement f qui transforme A en D et C en A
 b/Déterminer la nature et les éléments caractéristiques de f.
 c/Soit le point F = f(B). Montrer que les points A, C et F sont alignés et placer le point F.
- 2) Soit R La rotation de centre A et d'angle $\frac{\pi}{2}$ et g = foR . a/ Déterminer g (E). b/ Montrer que g est un translation dont on déterminera le vecteur .
- 3) Soit h l'antidéplacement qui envoie A sur D et C sur A a/montrer que h est une symétrie glissante.
 b/ Déterminer la forme réduite de h.

c/En déduire que AEFD est un parallélogramme.

4) Déterminer et construire l'ensemble $\Gamma = \{ M \in P \text{ tel que } g(M) = h(M) \}$

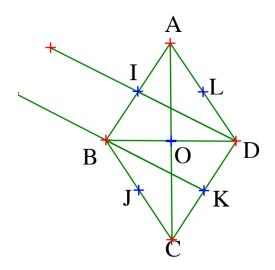


Exercice 2

Dans le plan orienté , on considère un losange ABCD tel que (\overrightarrow{AB} , \overrightarrow{AD}) $\equiv \frac{\pi}{3}[2\pi]$

On désigne par I , J , K , L et O les milieux respectifs de [AB] , [BC] , [CD] , [DA] et [BD]. On note Δ et Δ' les médiatrices respectives de [AB] et [CD]

- 1) a/Montrer qu'il existe un seul antidéplacement f qui transforme A en B et D en C b/Prouver que f n'est pas une symetrie orthogonale
- 2) Soit s la symetrie orthogonale d'axe Δ et R la rotation de centre B et d'angle $-\frac{\pi}{3}$ a/ Montrer que f = R o S b/ déterminer f (B) puis la nature et les éléments caractéristiques de f .
- 3) On pose g = f o S' ou s' la symetrie orthogonale d'axe Δ' . Déterminer g (C) et donner la nature et les éléments caractéristiques de g
- 4) On pose $h = g^{-1} \circ R$. Montrer que h est une translation que l'on déterminera



Exercice 3

Dans un plan orienté , on considère un carré ABCD de sens direct de centre O . On note I = D*C; $K = S_{(AB)}(C)$;

$$J = B * C \text{ et } I' = I * J.$$

- 1) a/Montrer qu'il existe un seul déplacement f qui transforme D en B et I en J
 - b/ Montrer que f est une rotation d'angle ($-\frac{\pi}{2}$) et de centre A .
 - c/ Quelle est la nature du triangle AIJ .
- 2) a/Vérifier que IOJB est un parallélogramme , en déduire que I ' ϵ (BD)
 - b/ Soit g l'antidéplacement qui transforme D en B et I en J . Démontrer que g est une symetrie glissante que l'on caractérisera .
- 3) On pose $\varphi = f^{-1} \circ T_{\overline{DB}} \circ S_{(DB)}$. Déterminer $\varphi(D)$ et $\varphi(I)$; caractériser alors φ .
- 4) a/montrer que $S_{(AB)} \circ S_{(AC)} = f$, en déduire que f(C) = K
 - b/ déterminer et construire la droite Δ image de (BC) par f.
- 5) a/Montrer que $S_{(AB)}$ o S_{Δ} est une translation dont on précédera le vecteur .
 - b/ Caractériser alors l'application : Ψ = S_{Δ} o $T_{2\overrightarrow{CA}}$.

Exercice 4

Soit ABC un triangle rectangle en A tel que (\overrightarrow{CA} , \overrightarrow{CB}) $\equiv \frac{\pi}{3}[2\pi]$, On désigne par O le milieu du segment [BC].

- 1) Montrer que le triangle OAC est équilatéral.
- 2) a/Montrer qu'il existe un unique déplacement f qui envoie O sur A et B sur C.
 - b/ Montrer que f est une rotation et construire son centre I.
 - c/Calculer $(\overrightarrow{IB}, \overrightarrow{IO})$ et $(\overrightarrow{IO}, \overrightarrow{IA})$ et montrer que $I \in [AB]$.
- 3) Soit R la rotation de centre c et d'angle $\frac{n}{3}$.
 - a/ déterminer la nature et les éléments caractéristiques de f o R
 - b/Soit C'l'image de C par f, montrer que O, I et C'sont alignés.
- 4) a/Montrer qu'il existe un unique antidéplacement q qui transforme O en A et B en C.
 - b/ Montrer que g est une symétrie glissante . Verifier que O appartient à l'axe Δ de g . puis vérifier que A aussi , appartient à Δ .
 - c/Déterminer alors la forme réduite de q.
 - d/Montrer que q(C) = C'
- 5) Soit $h = T_{BC} \circ S_{(AB)}$. Déterminer la nature de h et déterminer ses éléments caractéristiques.

