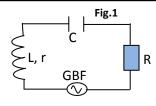
Prof: Barhoumi

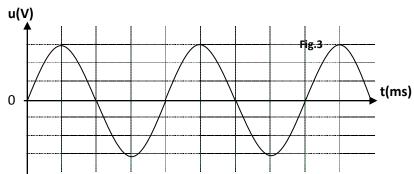
Ezzedine


Classe: 4ème Math A.S.: 2013/2014

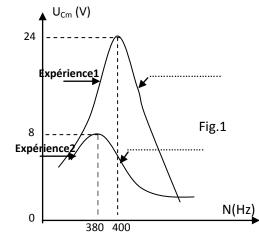

Tunisie - Sidi Bouzid - Lycée de Cebbala Les oscillations électriques forcées

Exercice n°1:

Un dipôle RLC est constitué d'un résistor de résistance R=15 Ω , d'une bobine d'inductance L=0,1H et de résistance r inconnue et d'un condensateur de capacité C=10⁻⁵F. Le dipôle RLC est branché en série avec un GBF délivrant une tension $u(t)=20\sin(2\pi Nt)$ de fréquence N réglable. (fig.1)


- 1. Pourquoi ces oscillations électriques sont dites forcées ?
- 2. Un dispositif approprié a permis de tracer la courbe de la valeur maximale U_{Rm} de u_R en fonction de la fréquence N.
- a. Pour une fréquence N₁ du générateur l'amplitude U_{Rm} est maximale. Qu'appelle-t-on le phénomène qui se produit ?
- b. Quelles sont les valeurs de N_1 et de U_{Rm} correspondante?
- c. À quelle condition ce phénomène se produit-t-il ? Montrer que N_1 obéit à cette condition.

3. Lorsque N=N₀ (fréquence propre de l'oscillateur), on représente sur la figure 3 la tension aux bornes du résistor $u_R(t)$.

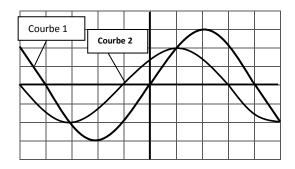

Représenter sur la même figure (fig.3) la tension u(t) aux bornes du générateur en précisant la valeur de la période et les valeurs maximales des tensions u(t) et u_R(t).

Exercice n°2:

L'étude d'un circuit RLC série alimenté par un GBF de fréquence N réglable, permet de tracer les courbes de la figure 1 donnant la variation de la valeur maximale de la tension aux bornes du condensateur U_{Cm} pour deux expériences (1) et (2).

- 1. Pour passer de l'expérience 1 à l'expérience 2, quel composant faut-il modifier sa valeur. Préciser si cette modification est une augmentation ou diminution.
- 2. Compléter la légende de la figure 1 par l'une des expressions (Résonnance floue) – (résonnance aigue).
- 3. Indiquer, en justifiant, si la tension maximale U_{Cm} atteint sa valeur la plus grande possible à la résonnance de charge ou à la résonnance d'intensité.

- 4. Marquer la valeur approximative de la fréquence propre N_0 de l'oscillateur.
- 5. La puissance électrique moyenne consommée par ce dipôle lorsque N=400Hz est P=0,08w. Sachant que la capacité C=10⁻⁶F, calculer la résistance R.


Exercice n°3:

Un circuit électrique est formé par l'association en série d'une bobine d'inductance L=0,8H et de résistance r, un résistor de résistance R=100 Ω , un condensateur de capacité C variable. L'ensemble est alimenté par un générateur de tension sinusoïdale u(t)=18sin(100 π t) en volts. On réalise deux expériences pour deux valeurs C_1 et C_2 de la capacité C du condensateur.

I/ Expérience n°1 : La capacité C=C₁.

L'oscillogramme ci-dessous représente l'évolution de la tension u(t) aux bornes du générateur et la tension $u_R(t)$ aux bornes du résistor.

Les sensibilités verticales sont les même sur les deux voies de l'oscilloscope.

- 1. a. Identifier, en justifiant, les deux courbes 1 et 2.
- b. Laquelle des deux courbes permet de suivre l'évolution de l'intensité du courant i(t)? Déterminer la valeur de la phase initial φ_i de i(t).

En déduire le caractère du circuit (inductif, capacitif ou résistif).

- c. Déterminer la sensibilité verticale des deux voies de l'oscilloscope.
- d. Calculer l'intensité maximale I_m du courant et l'impédance Z du circuit.
- 2. a. Faire un schéma du circuit en indiquant le sens arbitraire du courant et les flèches tensions, puis établir l'équation différentielle vérifiée par l'intensité du courant i(t).
- b. On représente, en annexe, la construction de Fresnel incomplète (Ech: 1cm pour 3V). Compléter les vecteurs manquants en précisant leurs modules.
- c. En déduire les valeurs de C₁ et r.

II/ Expérience $n^{\circ}2$: La capacité C=C₂=7 μ F.

La tension maximale U_m aux bornes du générateur est maintenu constante égale à 18V. On fait varier la fréquence N du générateur, on constate que les courbes de l'oscillogramme sont en phases pour une fréquence particulière N_0 de la fréquence du générateur.

- 1. De quel phénomène s'agit-il?
- 2. Calculer N₀.
- 3. a. Déterminer, pour N=N₀, l'intensité efficace I_e du courant dans le circuit.
- b. Ce résultat est-il prévisible ? Justifier la réponse.

Exercice n°4:

On réalise le montage suivant comportant :

- Un condensateur de capacité C,
- Une bobine d'inductance L,
- Un résistor de résistance $R=90\Omega$,
- Une boite de résistance de résistance variable R₀,
- Un générateur basse fréquence GBF,

- 1. On fixe R_0 =100 Ω , puis on visualise les tensions sur les deux voies Y_A et Y_B d'un oscilloscope. On observe sur l'écran :
- en Y_A : la tension u₁(t) délivrée par le générateur, elle est sinusoïdale de fréquence N.
- en Y_B : la tension $u_2(t)$ aux bornes de la résistance variable R_0 .

On faisant varié la fréquence N, on constate que U_{2m} passe par un maximum pour N_m =1520Hz.

On mesure à cette fréquence N_m , les valeurs maximales des tensions $u_1(t)$ et $u_2(t)$, on trouve : U_{1m} =4V et U_{2m} =2,1V.

a. Quelle est le nom du phénomène observé?

Donner la valeur de la fréquence propre N₀ du circuit.

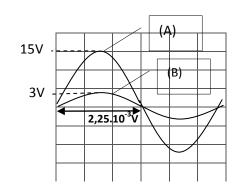
- b. Déduire la valeur de $k_1 = LC$.
- c. Déterminer la valeur de l'intensité efficace du courant dans le circuit.
- d. Le facteur de surtension est définie par : $Q = \frac{Ucm}{Um} = 2,5$. Montrer que $Q = \frac{1}{R_T} \sqrt{\frac{L}{C}}$

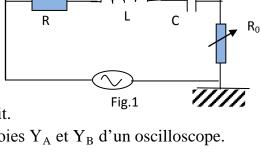
En déduire le quotient $k_2 = \frac{L}{c}$.

- e. Déterminer alors les valeurs de L et C.
- 2. On modifie la résistance R_0 de manière que sa valeur soit Ω 00 ans modifié les autres composants du circuit.

Indiquer, en justifiant, si les grandeurs suivant sont modifiées ou restent inchangées.

- Le facteur de surtension $Q = \frac{Ucm}{Um}$.
- La fréquence N_{m} correspondant au maximum de $U_{2\text{m}}$.
- L'impédance du circuit Z.


Exercice n°5:


On monte en série un résistor de résistance R, une bobine d'inductance L et de résistance $r=2\Omega$, un condensateur de capacité $C=5\mu F$ et un ampèremètre. On branche aux bornes de cette portion du circuit un générateur délivrant une tension alternative sinusoïdale d'amplitude U_{1m} maintenue constante, de fréquence F variable et d'expression en fonction du temps $u_1(t)=U_{1m}\sin(2\pi Nt)$.

Soit u₂(t) la tension instantanée aux bornes du dipôle formé par l'ensemble {bobine, condensateur}.

Un oscilloscope permet de visualisé simultanément les deux tensions $u_1(t)$ et $u_2(t)$.

- 1. Pour une valeur F_1 de la fréquence du on obtient sur l'écran de l'oscilloscope les deux courbes (A) et (B).
- a. Montrer que la courbe (A) représente $u_1(t)$.
- b. Déduire à partir des ces deux courbes la fréquence du générateur N_1 et les valeurs maximales U_{1m} et U_{2m} des tensions $u_1(t)$ et $u_2(t)$.

- 2. À la fréquence N_1 , l'ampèremètre indique la valeur efficace de l'intensité $I = \frac{0.15}{\sqrt{2}}A$.
- a. Sachant que I_m est la valeur maximale de l'intensité. Calculer r. I_m et la comparer à U_{2m} .
- b. Montrer que le circuit est en état de résonnance d'intensité.
- c. Calculer U_{Cm} la valeur de la tension aux bornes du condensateur et la comparer à U_{1m} .

Quel est le nom du phénomène ainsi obtenu?

3. on fait diminuer la fréquence du générateur à partir de N_1 et on suit l'évolution de la valeur efficace de la tension U_C à l'aide d'un voltmètre branché aux bornes du condensateur.

Pour une fréquence N₂, le voltmètre indique la valeur efficace la plus élevée U_C=16V et l'ampèremètre affiche I=96mA.

- a. Montrer que N₂ correspond à une résonance de charge.
- b. Déterminer la valeur de N₂.

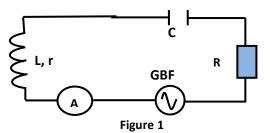
Exercice n°6:

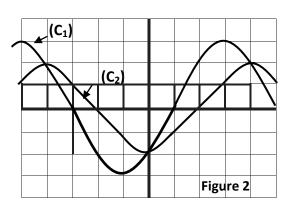
On considère le circuit électrique schématisé sur la figure 1 comportant :

- Un générateur GBF délivrant une tension sinusoïdale u(t) de fréquence N et d'amplitude U_{m} constante,
- un résistor de résistance R,
- un condensateur de capacité C,
- une bobine d'inductance L et de résistance interne r,
- un ampèremètre (A).

I. Première expérience:

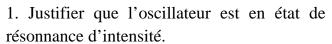
Pour une valeur N=N1 de la fréquence du GBF, un oscilloscope convenablement branché permet visualiser la tension u(t) aux bornes du GBF sur la voie A et la tension $u_R(t)$ aux bornes du résistor R sur la voie B.

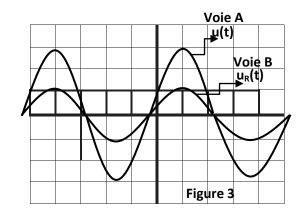

On obtient l'oscillogramme de la figure 2. Les sensibilités verticales et horizontales, pour les deux voies A et B, sont respectivement :


2V/div et 1ms/div.

- 1. a. Recopier le schéma de la figure 1 et indiquer par des flèches les branchements de l'oscilloscope.
- b. Montrer que la courbe (C_1) correspond à u(t).
- 2. En exploitant l'oscillogramme de la figure 2 :
- a. Déterminer le déphasage $\Delta \phi = \phi_{u(t)} \phi_{u_R(t)}$ sachant que $\phi_{u(t)}$ est la phase initiale de u(t) et $\varphi_{u_{R}(t)}$ la phase initiale de $u_{R}(t)$.
- b. Sachant que $u(t)=U_0\sin(2\pi N_1t)$, recopier et compléter le tableau ci-dessous, en précisant les valeurs des grandeurs physiques :

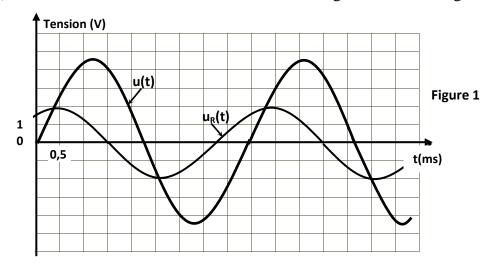
	Valeur maximale	Phase initiale	Fréquence N ₁
u(t)			
$u_{R}(t)$			


- c. L'impédance Z=90Ω. Quelle est l'indication de l'ampèremètre?
- d. Calculer la valeur de R.



II. Deuxième expérience :

On fait varier la fréquence N, pour une valeur $N=N_2$, on obtient l'oscillogramme de la figure 3. La sensibilité horizontale est 2ms/div, la sensibilité verticale pour la voie A est 2V/div et pour la voie B est 5V/div.


- 2. Sachant que RΩ60 Calculer est la nouvelle indication de l'ampèremètre ?
- 3. Montrer que $r=12\Omega$.
- 4. Calculer C sachant que L=1H.

Exercice n°7:

Un circuit électrique comporte, montées en série, une bobine d'inductance L et de résistance $r=10\Omega$, un condensateur de capacité $C=2\mu F$, un résistor de résistance R et un ampèremètre. Un générateur basse fréquence GBF impose, aux bornes du circuit, une tension sinusoïdale $u(t)=U_m sin(2\pi Nt)$, d'amplitude U_m constante et de fréquence N réglable.

Un oscilloscope permet de visualiser simultanément la tension u(t) aux bornes du générateur et la tension $u_R(t)$ aux bornes du résistor. On obtient les oscillogrammes de la figure 1.

- 1) Représenter le schéma du circuit électrique en précisant les connexions de l'oscilloscope pour visualiser simultanément les tensions $u_R(t)$ et u(t).
- 2) a- Montrer que la phase initiale de l'intensité du courant électrique $\phi_i = \frac{\pi}{3}$.

b- Relever, à partir des oscillogrammes de la figure 1, la fréquence N du GBF et les amplitudes U_m et U_{Rm} respectivement de u(t) et $u_R(t)$.

3) a- Montrer que :
$$R = \frac{2rU_{Rm}}{U_m - 2U_{Rm}}$$
.

- b- Calculer R.
- c- Déterminer la valeur de l'intensité I du courant électrique indiquée par l'ampèremètre.

4) a- Montrer que l'équation différentielle, régissant les oscillations du courant électrique circulant dans le circuit, s'écrit : $(R+r)i + L\frac{di}{dt} + \frac{1}{C}\int idt = u(t)$.

b- On a représenté à l'échelle : 1V ↔ 1 cm, le vecteur \vec{v} associé à u(t).

Compléter la construction de Fresnel, en

représentant les vecteurs $\overrightarrow{v_1}, \overrightarrow{v_2}$ et $\overrightarrow{v_3}$ associés

respectivement à (R+r)i , $\,L\frac{di}{dt}\,$ et $\frac{1}{C}\int i(t)dt.$

 U_{m}

c- En exploitant la construction de Fresnel, déterminer la valeur de L.