L.S.Bou ficha

Devoir de contrôle n°1

Le 16/11/2013

Sciences physiques

Durée : 2 Heures

Prof : H.LOTFI

Classe: 3ème SC

La qualité de la rédaction, la numérotation des questions et le respect de l'ordre des questions constituent un élément déterminant dans l'appréciation de la copie.

Chimie (8pts)

Exercice n° 1

On considère la classification électrochimique suivante :

Cu H₂ Pb Fe Zn Al

ordre de réduction croissant

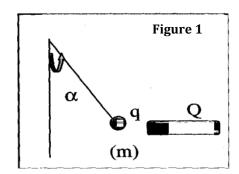
- 1- Dans un volume V=200ml d'une solution aqueuse de sulfate de fer II (Fe^{2+} , SO_4^{2-}) de concentration C=0.5 mol. L^{-1} , on introduit une masse m= 12g d'un mélange de deux métaux Zn et Cu.
 - a- Préciser le métal M qui va réagir avec les ions Fe²⁺. Justifier.
 - b- Ecrire les deux demi réactions et l'équation qui a lieu
- 2- a- Déterminer la quantité de matière des ions Fe^{2+} sachant que tous les ions réagirent.
 - b- Déduire la masse du métal M qui réagit sachant qu'il ne reste plus de métal M.
 - c- Déduire la masse l'autre métal.
- 3- On filtre le mélange obtenu et on ajoute au résidu solide un excès d'une solution de chlorure d'hydrogène (H_3O^+ , Cl^-), le volume de dihydrogène H_2 est V_G = 0.48L.
 - a- Ecrire l'équation de la réaction qui se produit. Justifier.
 - b-Calculer la quantité de H2 formée.
 - c- Déduire la masse du métal qui a réagit avec les ions H_3O^+ .

 On donne en g.mol⁻¹ M(Zn)=65; M(Cu)=63.5; M(Fe)=56; et $V_M=24L$.mol⁻¹

Exercice n°2

L'ion hypochlorite ClO^- réagissent avec le sulfure d'hydrogène H_2S en milieu acide selon cette réaction :

$$ClO^- + H_2S \longrightarrow S + H_2O + Cl^-$$


- 1) En utilisant le nombre d'oxydation, montrer qu'il s'agit d'une réaction d'oxydoréduction.
- 2) Préciser l'oxydant et le réducteur.
- 3)Préciser les couples redox mis en jeux.

Physique (12pts)

Exercice n°1

Un pendule électrique est constitué d'une boule très légère de masse m=0,l g portant une charge positive $q=10^{-8}$ C, suspendue à un fil de longueur l=0,2 m.

En approchant un bâton d'ébonite portant une charge Q, le pendule dévie ; le fil prend une inclinaison $\alpha = 20^\circ$ avec la verticale et la boule s'approche du bâton. (figure 1)

- 1) Préciser, en justifiant la réponse, le signe de la charge Q portée par le bâton.
- 2) Représenter les forces qui s'exercent sur la boule.
- 3) Déterminer la valeur de la force électrique exercée par le bâton d'ébonite sur la boule.
- 4) En admettant que la charge Q est localisée à l'extrémité du bâton, à une distance d = 2 cm de la boule, trouver Q.

<u>On donne</u>: $g = 10 \text{ N.kg}^{-1}$. $K = 9.10^9 \text{ S.I}$

Exercice n°2

Une charge électrique ponctuelle de valeur $q_1 = 2 \mu C$ est placée en un point O.

- 1) a- Définir un champ électrique.
 - b- Représenter sur un schéma quelques lignes de champs crée par q_1 .
- 2) Le point 0 est l'origine d'un repère orthonormé (Ox, Oy). On considère dans ce repère : Le point A de coordonnées $x_A = 6$ cm et $y_A = 0$ cm (Voir figure 2) On place maintenant en A une charge $q_2 = -4 \mu C$
 - a- L'interaction électrique s'exerçant entre deux charges q_1 et q_2 est-elle attractive ou répulsive ? Justifier.
 - b- Déterminer la valeur commune de la force d'interaction électrique \vec{F} entre deux charges q_1 et q_2 .
 - c-Représenter sur la figure 2 la force $\overline{F}_{1/2}$ exercée par la charge q_1 sur q_2 et la force $\overline{F}_{2/1}$ exercée par la charge q_2 sur q_1 à l'échelle 1cm pour 10N.
- 3) Soit un point B de coordonnées $x_B = 3$ cm et $y_B = 3$ cm.
 - a- Déterminer les valeurs des vecteurs champs électriques $E_1(B)$ et $E_2(B)$ crées respectivement par la charge q_1 et par la charge q_2 au point B.
 - b-Représenter les vecteurs $\vec{E}_1(B)$ et $\vec{E}_2(B)$ à l'échelle 1cm pour 10⁷ N.C⁻¹.
 - c- En déduire la valeur du vecteur champ électrique résultant $\overrightarrow{E}(B)$ crée par les charges q_1 et q_2 simultanément au point B. Représenter ce vecteur.

Donnée: $1 \mu C = 10^{-6} C$ Constante de la loi de coulomb: $K = 9.10^9 S.I$

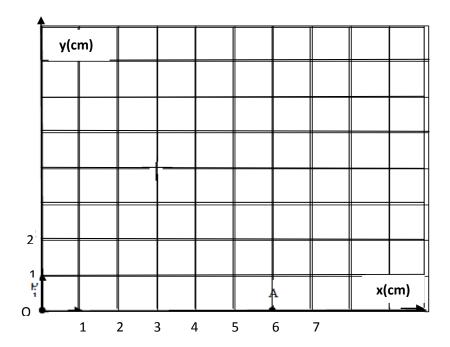


Figure 2