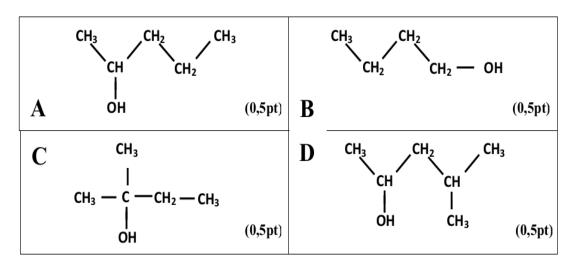
Niveau : 4^{im} ociences informatique Date :Avril 2013

Devoir de Contrôle n°3


Sciences physiques

Prof:Daghsni Sabbi Durée:2Heures And B

- L'utilisation de la calculatrice est permise.
- Etablir les expressions littérales avant toutes applications numériques.

CHIMIE (5points)

1- Donner le nom systématique de chaque alcool ainsi que sa classe :

- 2- Déterminer les formules semi-développées correspondant pour chaque nom :
 - **a-** 2-méthylpropan-2-ol. **(0,25pt)**
 - **b** méthanol. (0,25pt)
 - **c** butan-2-ol. (0,25pt)
 - d-3-méthylpentan-2-ol. (0,25pt)
 - **e-** 2,3-diméthylbutan-1-ol. (**0,25pt**)
- 3- a- Ecrire la formule générale d'un alcool. (0,25pt)
 - b- Déterminer la formule brute d'un alcool de masse molaire M=74 g.mol⁻¹. (0,75pt)
 - c- Donner alors la formule semi-développée de cet alcool, sachant qu'il est tertiaire. (0,5pt)
 - d- Nommer cet alcool. (0,25pt)

On donne: $M_0=16g.mol^1$, $M_C=12g.mol^1$, $M_H=1g.mol^1$

Nombre de Carbone	1	2	3	4	5	6
Nom	méth	éth	prop	but	pent	hex

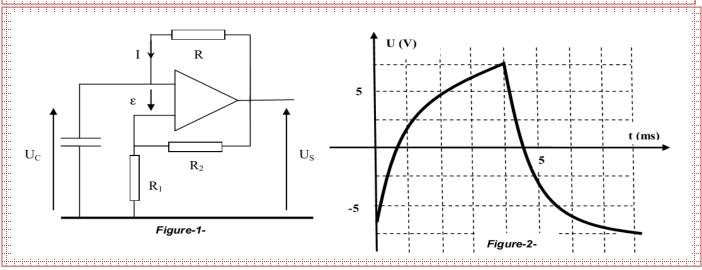
Physique (15pts)

Exercice 1:(8pts)

A l'aide d'un dipôle **RC** et d'un comparateur à amplificateur opérationnel polarisé en **∓15V**, on réalise le montage suivant :

- 1- On s'intéresse au comparateur : (figure 1)
 - a- Etablir l'expression de U_S en fonction de U_C , ϵ , R_1 et R_2 . (1 pt)
- b- Montrer que ce comparateur est à deux seuils de basculements U_{BH} et U_{HB} lorsque ε change de signe. (1pt)
- 2- Etablir la relation $RC \frac{dU_C}{dt} + U_C = U_S$. (1 pt)

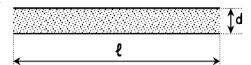
3- On suit l'évolution au cours du temps de U_C on obtient le graphe (*figure-2-*) déterminer <u>graphiquement</u> la valeur :


a- de la constante de temps ($\tau = RC$) de dipôle RC. (0,5 pt)

b- des tensions de basculements U_{BH} et U_{HB} . (1pt)

c- des durées T_1 (charge du condensateur) et T_2 (décharge du condensateur). (1 pt)

4- a- Monter que la période s'exprime $T = 2\tau Log(1 + \frac{2R_1}{R})$, en déduire le rapport $\frac{R_1}{R}$ (2 pt)


b- Calculer le rapport cyclique δ. (0,5 pt)

Exercice n°2: (7points)

L'extrémité O d'une corde OA de longueur $\ell=50$ cm , tendue horizontalement , est liée à une lame vibrant verticalement avec une fréquence N=100 Hz et d'amplitude a . L'autre extrémité A est liée à un dispositif d'absorption évitant toute réflexion de l'onde . Celle-ci se propage le long de la corde avec une célérité v=10 m.s $^{-1}$.

1°) En lumière ordinaire, la corde prend l'aspect d'une bande floue de largeur d = 4 mm, comme l'indique la figure ci-contre.

- a) Déduire la valeur de l'amplitude a .
- b) Montrer que l'amortissement est négligeable .
- c) Déterminer la longueur d'onde $\pmb{\lambda}$.
- 2°) a) Ecrire l'équation horaire du mouvement de O, ainsi que celle du mouvement d'un point M du fil situé au repos à la distance OM = x = 17,5 cm.
 On suppose qu'à la date t = 0 s, la source O débute son mouvement en allant dans le sens positif.
 - b) Comparer le mouvement du point M avec celui de la source O.
 - c) Représenter sur le même système d'axes le diagramme du mouvement de O et celui de M sur l'intervalle [0 ; 3T].
- 3°) a) Représenter l'aspect de la corde à la date $t_1 = 2,75.10^{-2}$ s.
 - b) Placer sur le graphe précédent , les points qui , à la date t_1 ont une élongation égale à -10^{-3} m , se déplaçant dans le sens descendant .

- 4°) La corde est éclairée par une lumière stroboscopique de fréquence N_e réglable .
 - Décrire ce que l'on observe lorsque N_e prend les valeurs :
 - $* N_e = 25 Hz$.
 - $* N_e = 51 Hz$.
 - $* N_e = 98 Hz$.