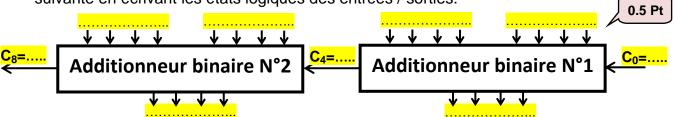
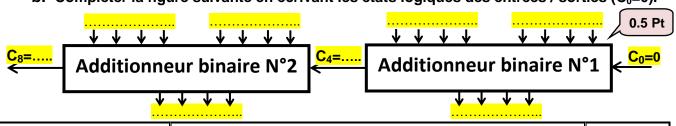

Devoir de contrôle N°1

Réalisé par : Mr Raouafi.A


B-PARTIE GENIE ELECTRIQUE:

I. <u>Etude Arithmétique et Binaire:</u>

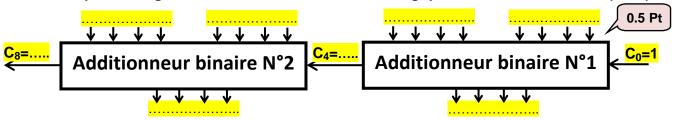
4. Effectuer en binaire les opérations suivantes en tenir compte du format donnée.


5. On utilise le circuit suivant pour additionner les 2 nombres A et B. Compléter la figure suivante en écrivant les états logiques des entrées / sorties.

6. Maintenant, on utilise le même circuit mais pour soustracter les 2 nombres A et B.

a. Expliquer brièvement comment on peut changer la soustraction en addition entre deux nombres binaires A et B ?

b. Compléter la figure suivante en écrivant les états logiques des entrées / sorties (C₀=0).


Dossier Pédagogique

UNITE DE FABRICATION DE COUVERCLES EN BETON

Page 5 / 8

0.5 Pt

c. Compléter la figure suivante en écrivant les états logiques des entrées / sorties (C₀=1).

II. Etude du circuit de comparaison 4063:

On souhaite de comparer deux nombres binaires A et B ayant chacun 4 bits avec le circuit intégré 4063. Lors de la comparaison trois cas possibles: I(A<B); E(A=B) et S(A>B).

1. Compléter le tableau suivant :

	Sorties			Mot binaire B				Mot binaire A					
	S	Е		B1	B2	B3	B4	A 1	A 1	A2	А3		
				1	0	1	0	1	1	0	1		
0.5				0	1	1	0	0	1	1	0		
				1	1	0	1	1	0	0	1		
				1	0	0	1	1	0	1	1		

2. Pour ce comparateur à 4 bits (4 comparateurs élémentaires en cascade).

a. Exprimer, en fonction de i_0 , e_0 , s_0 , i_1 , e_1 , s_1 , i_2 , e_2 , s_2 , i_3 , e_3 et s_3 les sorties I, E et S:

b. Exprimer alors E en fonction de I et S.

0.25 Pt

c. Vérifier le fonctionnement lorsque : A=(1011)₂ et B=(1010)₂

 $I = \dots$; $E = \dots$ et $S = \dots$ 0.25 Pt

III. Etude du circuit de multiplexage 74157:

En se référant au circuit intégré 74157 (voir DT page 2/4) :

1. Quelle est le rôle de ce circuit ?

0.5 Pt

2. Compléter le tableau ci-dessous :

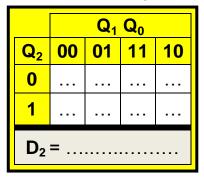
$\bar{\mathbf{A}}/\mathbf{B}$	A (1A 2A 3A 4A)	B (1B 2B 3B 4B)	Y (1Y 2Y 3Y 4Y)
0	1001	1101	
	1001	1010	1010
		0101	0011
	0110		1111

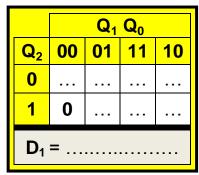
0.75 Pt

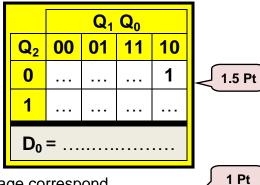
IV. Etude du circuit de comptage avec des bascules D et avec un circuit intégré:

On désire réaliser un compteur synchrone modulo 5 à base des bascules D.

Déterminer le nombre de bascules nécessaires à utiliser.

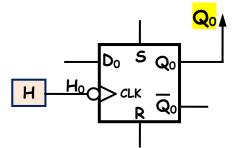

0.5 Pt

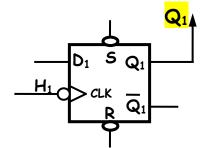

Dossier Pédagogique UNITE DE FABRICATION DE COUVERCLES EN BETON Page 6 / 8

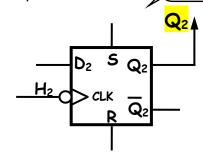

2. Compléter la table de comptage ainsi la commande des bascules.

Décimal	Etat actuel			Eta	at fu	tur	Cor	nmai	nde d	les b	ascu	les
cin		\mathbf{Q}^{n}		Q^{n+1}		BASC	JLE 2	BASC	ULE 1	BASC	ULE 0	
Dé	Q_2	Q_1	Q_0	Q_2	Q_1	Q_0		D_2		D_1		D_0
0									μ 0	0		
1								-				
2				0	1	1						
3							3	1				
4												

3. Mettre en équations les entrées de commande des différentes bascules.

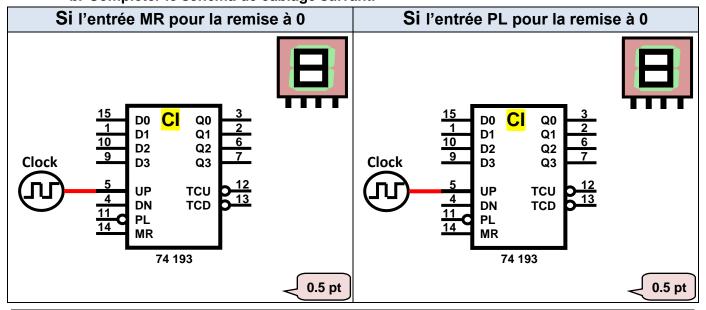






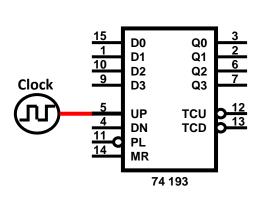
1.5 Pt

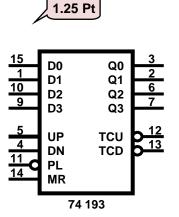
5. Compléter le schéma de câblage du circuit de comptage correspond.



- 6. On désire réaliser maintenant ce compteur Mod 5 à base de C.I 74193 (voir DT page 2/4).

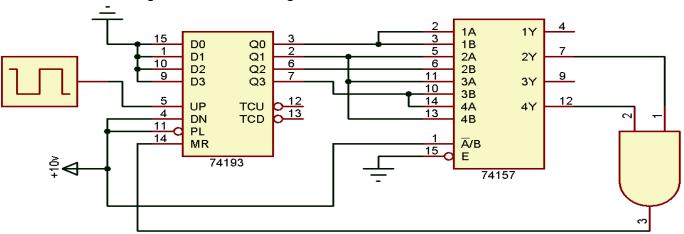
 - b. Compléter le schéma de câblage suivant.


Dossier Pédagogique


UNITE DE FABRICATION DE COUVERCLES EN BETON

Page 7 / 8

7. On désire réaliser un compteur synchrone modulo 40 à base de CI 74193.


d. Compléter le schéma de câblage suivant en utilisant l'entrée MR pour la remise à 0 et TCU pour la mise en cascade.

V. Etude de l'ensemble « circuit multiplexer 74157 + circuit comptage 74193 »:

On donne la figure ci-dessous de gestion de commande :

1. En se référant au figure ci-après, compléter les vides suivants :

2. Compléter attentivement le tableau ci-dessous :

1 dere ↑ 0 0 0 0 0 0 0 0 2 deme ↑ 0 0 0 0 1 0 0 0 0 1 3 deme ↑ 9 5 deme ↑ 0 0 0 1 1		<u> </u>					1 ل _ا
2 ^{éme} ↑ 0000 3 ^{éme} ↑ 9 5 ^{éme} ↑ 0001	Front	$\mathbf{Q} \left(\mathbf{Q_3} \mathbf{Q_2} \mathbf{Q_1} \mathbf{Q_0} \right)$	A (4A3A2A1A)	B (4B3B2B1B)	Y (4Y3Y2Y1Y)	(Y) ₁₀	
3 ^{éme} ↑ 4 ^{éme} ↑ 5 ^{éme} ↑ 6 ^{éme} ↑ 0 0 1 1		0000					
4 ^{éme} ↑ 5 ^{éme} ↑ 6 ^{éme} ↑ 0011	2 ^{éme} ↑		0001				
5 ^{éme} ↑ 0011	3 ^{éme} ↑						
6 ^{éme} ↑ 0 0 1 1	4 ^{éme} ↑					9	
	5 ^{éme} ↑						
	6 ^{éme} ↑				0011		
7 ^{eme} ↑	7 ^{éme} ↑						

3. Déduire le cycle de comptage réalisé et son nature (régulier ou non) par ce système :

0.5 Pt

Dossier Pédagogique UNITE DE FABRICATION DE COUVERCLES EN BETON

Page 8 / 8