Lycée Sidi Zekri Jerba

DEVOIR DE CONTROLE N°1

Mr: Tobji Taoufik

Sciences physiques

Classes: 3^{ème} Sc.Exp

Durée : 2 heures : : date : 11 - 11 - 2011

CHIMIE (7 points)

Exercice n°1

1°) Rappeler les définitions des termes suivants : oxydation, réduction, oxydant, réducteur.

 $(A_1; 1pt)$

2°) On considère les couples redox suivants :

- couple (1): $S_2O_8^{2-}/SO_4^{2-}$;

- couple $(2): I_2/I^-;$

- couple (3): MnO_4^-/Mn^{2+} .

a) Ecrire l'équation formelle associée a chaque couple redox. (A₂; 1pt)

b) Calculer les nombres d'oxydation du soufre (S) dans les ions $S_2O_8^{2-}$ et SO_4^{2-} . (A₂; 0,5pt)

c) Sachant que le réducteur du couple (2) est plus fort que celui du couple (1), écrire l'équation de la réaction spontanée qui peut se produire entre ces deux couples

 $(A_2; 0,5pt)$

Exercice n°2

I- Une lame de fer, plongée dans une solution de sulfate de nickel (Ni²⁺+SO₄²⁻) se recouvre d'un dépôt métallique.

1°) Quels sont les couples rédox qui interviennent ?

 $(A_2; 0,5pt)$

2°) Ecrire l'équation-bilan de la réaction qui a eu lieu.

 $(A_2; 0,5pt)$

 $(A_2; 0,5pt)$

3°) Quand on plonge une lame de plomb dans une solution de sulfate de nickel, il ne se passe rien.

A partir de ces deux observations expérimentales, classer les trois couples rédox concernés par ordre croissant du pouvoir réducteur. (A₂; 0,5pt)

- II- Des clous de fer ont une masse m=10 g. On les place dans un bêcher et on leur ajoute un volume V=10 mL d'une solution d'acide chlorhydrique de molarité C inconnue. On observe un dégagement de dihydrogène (H₂) et la solution devient légèrement verdâtre. Lorsque le dégagement de dihydrogène s'arrête on fait sortir les clous, on les sèche et on mesure leur masse. On trouve m'=9,44 g.
- 1°) Ecrire l'équation de la réaction qui a eu lieu et montrer que c'est une réaction d'oxydoréduction. Préciser les couples rédox qui interviennent. (A2; 1,5pt)
- 2°) Calculer le volume de dihydrogène dégagé.
- 3°) Déterminer la molarité C de la solution d'acide chlorhydrique utilisée. (A₂ ; 0,5pt) On donne :
 - la masse molaire atomique du fer : M_{Fe} = 56 g.mol⁻¹.
 - Le volume molaire des gaz : $V_m = 22.4 \text{ L.mol}^{-1}$.

PHYSIQUE (13 points)

EXERCICE N°1

On donne : Constante de la loi de coulomb $K = 9.10^9$ (U.S.I) $1 \mu C = 10^{-6} C$

- 1°) Une charge électrique ponctuelle de valeur q_1 = 0,25 μ C est placée en un point O origine d'un repère orthonormé $\left(O, i', j'\right)$
 - a- Représenter quelques lignes de champ électrique crées par cette charge à son voisinage. Sur la figure 1 de l'annexe. (A2; 0,25pt)
 - b- Déterminer la valeur du vecteur champ électrique $E_1(M)$ crée par la charge q_1 en un point M de coordonnées $x_M = 3$ Cm et $y_M = 4$ Cm. (A₂; 0,75pt)
 - c- Représenter le vecteur $E_1(M)$ sur la figure 1 de l'annexe. (A₂; 0,5pt)
- 2°) On place une autre particule, qui porte une charge q_2 = 0,25 $\,\mu$ C, en un point A de coordonnées x_A = 6 Cm et y_M = 0.
 - a- L'interaction électrique s'exerçant entre les deux charges q_1 et q_2 est-elle attractive ou répulsive ? Justifier. (A₂; 0,5pt)
 - **b-** Donner les caractéristiques de la force d'interaction électrique $F_{\frac{1}{2}}$ exercée par la charge q_1 sur q_2 . (A₂; 1pt)
 - **c-** Déterminer la valeur de champ électrique $\stackrel{P}{E}_2(M)$ crée par la charge q_2 au point M. (A₂; 0,5pt)
 - d- Représenter le vecteur $\stackrel{\mathcal{C}}{E}_2(M)$ sur la figure 1 de l'annexe. (A₂; 0,5pt)
 - e- En déduire les caractéristiques du vecteur champ électrique résultant $E_r(M)$ crée par les charges q_1 et q_2 au point M. Représenter ce vecteur sur la figure 1 de l'annexe.

 $(A_2; 1,5pt)$

3°) On remplace la charge q_2 placée au point A par une autre particule qui porte une charge $q_3=q_1=0.25~\mu C$.

Déterminer la valeur du champ électrique résultant $\stackrel{P}{E'}_{r}(N)$ crée par les charges q_1 et q_2 au point N de coordonnées $x_N=3$ Cm et $y_N=0$. (C; 0,5pt)

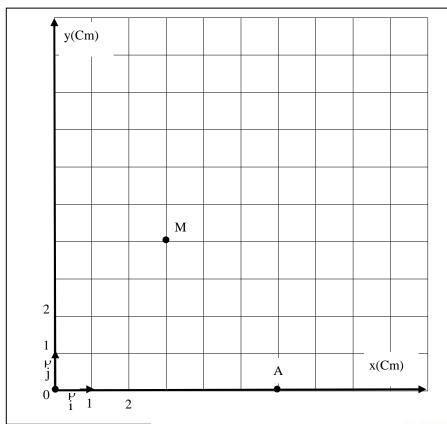
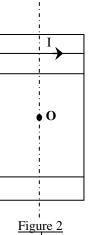


Figure 1

www.devoir@t.net

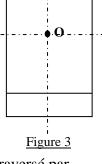
EXERCICE N°2


On donne: $\| \hat{B}_{h} \| = 2.10^{-5} \text{ T}$; $\mu_0 = 4\pi.10^{-7} \text{(U.S.I)}$; $4\pi \approx 12$

On considère un solénoïde (S) de longueur $L=20\,\mathrm{cm}$ et comportant 100 spires est traversé par un courant d'intensité $I=50\,\mathrm{mA}$. (figure 2)

1°) Préciser les faces nord et sud du solénoïde sur la figure 2 de l'annexe.

 $(A_2; 0,5pt)$


- 2°) a- Donner les caractéristiques du vecteur champ magnétique B₁ à l'intérieur de solénoïde (**S**) au point **O**. (A₂; 1pt)
 - b- Représenter quelques lignes de champ à l'intérieur du solénoïde sur la figure 2 de l'annexe. $(A_2; 0.5pt)$

- 3°) Le solénoïde (**S**) est placé de façon que son axe soit perpendiculaire au plan méridien magnétique.(figure 3)
- a- Représenter la composante horizontale de champ magnétique terrestre au point O. sur la figure 3 de l'annexe. (A₂; 0,5pt)
 - b- Calculer la valeur du champ magnétique résultant $\|\mathbf{B}_{\mathbf{r}}\|$ au point \mathbf{O} . SM

 $(A_2; 1pt)$

- c- En déduire la valeur l'angle α formée par B_r et B_h . (A₂; 0,5pt)
- d- Représenter une aiguille aimantée placée au point O. sur la figure 3 de l'annexe. $(A_2; 0.5pt)$

NM

- 4°) a- A l'aide d'un schéma clair, Expliquer comment faut-il placer le solénoïde traversé par le courant d'intensité I, pour que B_h et B'_r (champ magnétique résultant) soient parallèles et de sens opposés. Préciser le sens de courant. (C; 1pt)
 - b- Calculer la valeur du champ magnétique résultant B'_r. (A₂; 0,5pt)

Annexe

Nom et prénom :

Classe							
Classe							

4	y(Cm)							
			M					
2								
1								
pʻ j				A	A	x(Cm)		
	ν i 1	2		P	A		x(C	

Figure 1

Echelle: $1Cm \longrightarrow 3.10^5 \text{ N.C}^{-1}$

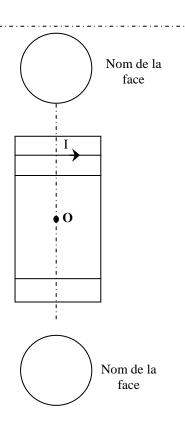
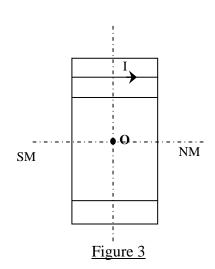



Figure 2

