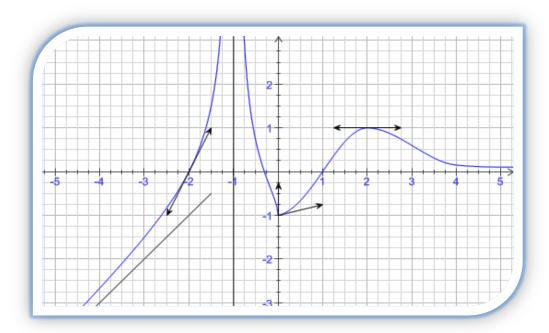
Prof	Mechmeche Imed
Lycée	Borj-cedria
Niveau	3 ^{ème} Maths

Devoir de synthèse N°1

Matière	Maths
Date	06/12/2011
Durée	2 h

Exercice 1: (5 pts)

La figure ci-dessous est la représentation graphique d'une fonction f définie sur $\mathbb{R}\setminus\{-1\}$ qui admet trois asymptotes, une oblique en $-\infty$ d'équation y=x+1,une horizontale en $+\infty$ d'équation y=0 et une verticale d'équation x=-1.



1. Déterminer les limites suivantes

$$\lim_{-\infty} f(x) - x \; ; \quad \lim_{-1} \frac{1}{f(x)} \; ; \quad \lim_{+\infty} \frac{x}{f(x)} \; ; \quad \lim_{0^{-}} \frac{f(x) + 1}{x}$$

- 2. Déterminer f'(-2) ; f'(2) ; $f_d'(0)$
- 3. Donner une équation de la tangente à C_f au point d'abscisse -2.
- 4. Donner alors une approximation affine de f(-2.01)
- 5. Expliquer pourquoi f n'est pas dérivable en 0, puis donner les équations des deux demi-tangentes à \mathcal{C}_f en 0.

Exercice 2: (6 pts)
Soit la fonction
$$f$$
 définie sur \mathbb{R}^* par $f(x) = \begin{cases} \frac{-x^3 + x^2 + x - 1}{4(x^2 - x)} & \text{si } x < 1 \\ \sqrt{x^2 - x + 1} - x & \text{si } x \ge 1 \end{cases}$

1. Montrer que pour
$$x < 1$$
 $f(x) = \frac{-x^2+1}{4x}$

- 2. Montrer que f est continue en 1.
- 3. Montrer que la droite d'équation $y=-\frac{1}{4}x$ est une asymptote oblique à \mathcal{C}_f en $-\infty$

4. Calculer la limite de f en $+\infty$ puis interpréter le résultat graphiquement.

5. C_f admet-elle une autre asymptote ? laquelle ? justifier votre réponse.

6. Montrer que f est dérivable à droite en 1 et que $f_d{}'(1) = -0.5$

7. Montrer que f est dérivable en 1.

Exercice 3: (5 pts)

Dans la figure ci-contre (C) est le cercle de centre O passant par A et B, (C') est le cercle de centre O' passant par A, B et O. On donne $(\overrightarrow{OA}, \overrightarrow{OB}) \equiv \frac{2\pi}{3} [2\pi]$, O,I et C sont alignés.

1. Calculer $(\widehat{\overrightarrow{CB}, CA})$ puis $(\widehat{\overrightarrow{IB}, IA})$

2. Déterminer alors les ensembles suivants :

a)
$$\Gamma = \left\{ M \in P; \left(\widehat{\overrightarrow{MA}}, \widehat{MB} \right) \equiv -\frac{2\pi}{3} \left[2\pi \right] \right\}$$

b)
$$\Gamma' = \left\{ M \in P; \left(\widehat{MA}, \widehat{MB} \right) \equiv -\frac{\pi}{3} [2\pi] \right\}$$

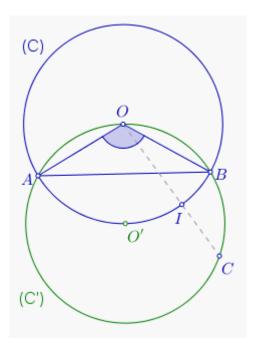
3. Calculer $(\widehat{BO}, \widehat{BA})$ puis $(\widehat{O'O}, \widehat{O'A})$

4. Montrer alors que (C) et (C') ont le même rayon

5. Montrer que
$$(\widehat{CB}, \widehat{CI}) \equiv (\widehat{CI}, \widehat{CA})$$
 [2 π]

6. Montrer que
$$(\widehat{\overrightarrow{BA},\overrightarrow{BC}}) \equiv 2(\widehat{\overrightarrow{BA},\overrightarrow{BI}})$$
 [2 π]

7. Déduire de ce qui précède que I est le centre du cercle inscrit au triangle ABC



Exercice 4: (4 pts)

1. Simplifier $A = \cos\left(-x + \frac{5\pi}{2}\right) + \sin(x - 3\pi) + \sin\left(x - \frac{3\pi}{2}\right) + \cos(2\pi - x)$

2. Montrer que $sin^2 \frac{\pi}{8} + sin^2 \frac{3\pi}{8} + sin^2 \frac{5\pi}{8} + sin^2 \frac{7\pi}{8} = 2$

3. Soit l'inéquation (I) : $\tan \theta \ge -\sqrt{3}$.

a) Représenter sur le cercle trigonométrique les solutions de (I)

b) Résoudre dans $[0\ , 2\pi[\ l'inéquation\ (l)$

4. Résoudre dans $]-\pi$, π] $|\sin\theta| < \frac{1}{2}$

