Exercice 1: (4 points)

QCM: Une seule bonne réponse associée à chacune des propositions suivantes, préciser la :

1°) Si $(A, B \text{ et } C \text{ sont trois pionts alignés tel que } \overrightarrow{AB} \cdot \overrightarrow{BC} \text{ est positif})$ alors :

a)
$$B \in [AC]$$

b)
$$A \in [BC]$$

c)
$$C \in [AB]$$

2°) Le domaine de définition de la fonction f définie par : $f(x) = \begin{cases} \frac{2x-1}{x+3} & \text{si } x > 0 \\ \sqrt{1-x} & \text{si } x \leq 0 \end{cases}$ est :

a)
$$\mathbb{R} \setminus \{-3\}$$

b)
$$]-\infty,1]\setminus\{-3\}$$

3°) **Si** (g est une fonction impaire tel que g(-2) = 2) **alors**

a)
$$g(2) = -2$$

b)
$$g(2) = 2$$

$$4^{\circ})\cos\left(-\frac{235\pi}{12}\right) =$$

a)
$$\frac{\sqrt{6} - \sqrt{2}}{4}$$
 b) $\frac{-\sqrt{3}}{2}$

b)
$$\frac{-\sqrt{3}}{2}$$

c)
$$\frac{\sqrt{2}}{2}$$

Exercice n°2: (6 points)

Soit f la fonction définie par sa courbe représentative dans le repère orthonormé ci-joint :

- 1°) Déterminer D_f : le domaine de définition de f.
- 2°) a) Déterminer f(-5), f(0), f(4) et f(9).
 - b) Déterminer $\lim_{x\to-\infty} f(x)$, $\lim_{x\to(-1)^-} f(x)$, $\lim_{x\to(-1)^+} f(x)$, $\lim_{x\to 3^-} f(x)$, $\lim_{x\to 3^+} f(x)$ et $\lim_{x\to+\infty} f(x)$.
 - c) Dresser le tableau de variation de f.
- 3°) Déterminer f([0,2]), $f(]-\infty,-1[)$ et f([4,9])
- 4°) Dresser le tableau de signe de f(x).
- 5°) Soit g la fonction définie par : g(x) = f(|x|) 1
 - a) Calculer g(-1) , g(0) , g(2) et g(-2)
 - b) Prouver que : le domaine de définition de g est $D_g = \mathbb{R} \setminus \{-3, 3\}$
 - c) Construire C_g la courbe représentative de g.
 - d) Dresser le tableau de variation de g.

Exercice 3: (4 points)

Soit $f(x) = (\cos x + \sin x)^2 - 1$; $x \in \mathbb{R}$ et \mathcal{C}_f sa courbe représentative dans un repère orthonormé.

- 1°) a) Calculer $\left(\frac{\pi}{6}\right)$, $f\left(\frac{5\pi}{6}\right)$, $f\left(\frac{125\pi}{6}\right)$ et $f\left(-\frac{\pi}{4}\right)$.
 - b) Montrer que : pour tout réel x on a $f\left(\frac{\pi}{2}-x\right)=f(x)$.
 - c) Déduire que \mathbf{c}_f admet un axe de symétrie Δ que l'on précisera.
- 2°) a) Montrer que, pour tout réel x on a: f(x) = 2sinx.cosx.
 - b) Montrer que le point $I\left(\frac{\pi}{2}, \mathbf{0}\right)$ est un centre de symétrie de \mathbf{C}_f .

Exercice n°4: (6 points)

Soient ABC un triangle équilatéral de côté $4\ cm$, I le milieu du segment [AB] et K le barycentre des points pondérés (B,3) et (C,1).

- 1°) Calculer $\overrightarrow{IC} \cdot \overrightarrow{AB}$, $\overrightarrow{IB} \cdot \overrightarrow{IA}$ et $\overrightarrow{IA} \cdot \overrightarrow{BC}$.
- 2°) a) Calculer KC et KB.
 - b) Calculer \overrightarrow{CK} . \overrightarrow{CA} .
 - c) Déduire la distance AK.
- 3°) Pour tout point M du plan on pose : $f(M) = 3 MB^2 + MC^2$.
 - a) Montrer que pour tout point M du plan on a : $f(M) = 4MK^2 + 12$.
 - b) Déterminer l'ensemble : $\Omega = \{M \in P \mid f(M) = 48\}$.
 - c) Vérifier que $C \in \Omega$ puis construire Ω .
 - d) La droite (IC) recoupe Ω en F. Calculer \overrightarrow{BF} . \overrightarrow{BA} .

BON TRAVAIL

Nom et Prénom :	Classe :	Sujet :
-----------------	----------	---------

NB : Feuille à rendre avec la copie

Exercice n° 1:

QCM1	
QCM2	
QСМЗ	
QCM4	

Exercice n° 2:

