Osérie n° 5

Molécules et Ions - Loi des nœuds - Loi des mailles

Exercice n° 1:

- 1) Comment sont les molécules d'un corps pur ?
- 2) Comment sont les molécules d'un mélange homogène de deux corps purs ?
- 3) Comment sont les molécules d'un mélange hétérogène de deux corps purs ?

Exercice n° 2:

On donne les entités chimiques suivantes : OH^- ; H_3O^+ ; S^{2-} ; CO_3^{2-} ; F; AI^{3+} ; MnO_4^- ; CH_4 ; N_2 ; H_2O ; AI; Ca^{2+} ; CI^- ; C_2H_6 ; $CH_3NH_2^-$ et SO_4^{2-} .

Classer ces entités chimiques dans le tableau suivant :

Atome	Molécule	Ion simple		Ion polyatomique		
		Anion	Cation	Anion	Cation	

Exercice n° 3:

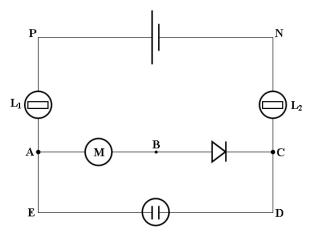
Compléter le tableau suivant par ce qui manque :

Nom de la molécule	Composition	Atomicité	Formule	Corps simple	Corps composé
Dioxyde de carbone	1 atome de carbone (C) 2 atomes d'oxygène (O)				
Ozone	3 atomes d'oxygène (O)				
Eau oxygénée	2 atomes d'hydrogène (H) 2 atomes d'oxygène (O)				
Butane	4 atomes de carbone (C) 10 atomes d'hydrogène (H)				
Ammoniac	1 atome d'azote (N) 3 atomes d'hydrogène (H)				

Exercice n° 4:

- L'eau minérale renferme, entre autre, deux types d'ions : l'ion sodium et l'ion bicarbonate.

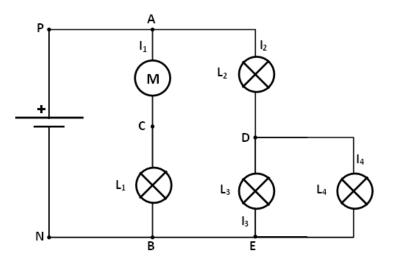
 1) L'ion sodium est ion simple qui porte une charge $\mathbf{q} = \mathbf{1,6.10^{-19}}$ C. Ecrire le symbole de cet ion sachant que le symbole du sodium est Na.
- 2) L'ion bicarbonate est formé par un atome de carbone et trois atomes d'oxygène, l'ensemble porte deux charges négatives
 - a) Cet ion est-il un ion simple ou un ion polyatomique? Justifier.
 - **b)** Ecrire la formule de cet ion.
 - c) Calculer la charge que porte cet ion.



Exercice n° 5:

Soit le circuit électrique suivant :

On donne : $U_{PA} = 2 V$; $U_{AC} = 10 V$ et $U_{AB} = 2 U_{PA}$.


- 1) Représenter, par une flèche sur le circuit les tensions suivantes : U_{DE} ; U_{CB} et U_{CN} . Donner le signe de chacune de ces tensions.
- 2) Enoncer la loi des mailles.
- 3) On branche un voltmètre à aiguille entre les bornes du générateur pour mesurer la tension U_{PN} . Représenter ce voltmètre sur le circuit en indiquant ses deux bornes.
 - a) Le calibre du voltmètre étant fixé à 30~A et l'aiguille s'arrête devant la graduation 14~ sur l'échelle 30. Calculer la valeur de U_{PN} . En déduire celle de U_{NP} .
 - b) Calculer les valeurs des tensions U_{DE} ; U_{CB} et U_{CN} .

Exercice n° 6:

On considère le circuit électrique suivant :

- 1) Indiquer le sens du courant dans chaque branche du circuit.
- 2) Comment sont branchés la lampe L_1 et le moteur ?
- 3) On donne les intensités du courant suivantes : I = 1,3 A; $I_1 = 0,5 A$ et $I_4 = 0,2 A$.
 - a) Calculer la quantité d'électricité qui traverse le moteur pendant 15 minutes de fonctionnement.
 - **b**) En déduire le nombre d'électrons qui le traverse.
 - c) Quelle est l'intensité de courant qui traverse la lampe L₁? Justifier.
 - d) Calculer l'intensité du courant qui traverse la lampe L₂.
 - e) En déduire l'intensité qui traverse la lampe L₃.
- 4) Un voltmètre branché aux bornes du générateur mesure une tension \mathbf{U}_G = 18 \mathbf{V} .
 - a) Représenter le voltmètre qui permet de mesurer la tension \mathbf{U}_G et préciser ses bornes.
 - b) Représenter par des flèches sur le circuit les tensions suivantes : U_{PN} ; U_{L1} ; U_{AC} ; U_{L2} ; U_{L3} et U_{L4} .
- c) Sachant que la tension aux bornes du moteur est $U_M = 8$ V et celle aux bornes de la lampe L_3 est $U_{L3} = 7$ V, trouver :
 - i. la valeur de la tension aux bornes de la lampe L_1 .
 - ii. la valeur de la tension aux bornes de la lampe L_2 .
- d) Quelle est la valeur de la tension aux bornes de la lampe L_4 ? Justifier.
- e) Quel est le signe de la tension U_{ED} ? Donner sa valeur.

