Exercices de Révision d' ANALYSE

EX I

On considère la fonction: $f(x) = \frac{x^2 - 4x + 6}{(x-1)^2}$

- 1)a) Etudier les limites de f aux bornes de son ensemble de définition
 - b)i) Donner une équation des asymptotes au graphe de f
 - ii) Etudier la position du graphe de f par rapport à son asymptote horizontale
 - c) Dresser le tableau de variation de f
- 2) Construire les asymptotes et le graphe de f
- 3)a) Déterminer les réels a ; b et c tels que: $\forall x \in \mathbf{R} \{1\}$ $f(x) = a + \frac{b}{x-1} + \frac{c}{(x-1)^2}$
 - b) Déterminer l'aire du domaine limité par: le graphe de $\,f\,$, l'axe $\,(Ox)\,$

et les droites: x = 2 et x = 3

c)i) $k \geq 3\,$. Exprimer en fonction de $\,k\,$, $A(k)\,$, l'aire du domaine limité par:

le graphe de f, son asymptote horizontale et les droites: x=3 et x=k

ii) Etudier la limite de A(k) lorsque k tend vers $+\infty$

EXII

On considère la fonction: $f(x) = e^{2x} - e^{x} + 1$

- 1)a) Etudier les limites de f aux bornes de son ensemble de définition
 - b)i) Donner une équation de l'asymptote au graphe de f
 - ii) Etudier la position du graphe de f par rapport à son asymptote
 - c) Dresser le tableau de variation de f
 - d) Déterminer les coordonnées du point d'inflexion du graphe de f
 - e) Déterminer une équation de T_0 la tangente au graphe de f au point d'abscisse x=0

2) Construire l'asymptote, la tangente T₀ et le graphe de f

3)a) Déterminer l'aire du domaine limité par: le graphe de $\,f\,$, la tangente $\,T_0\,$ et la droite: $\,x$ = - 1

b)i) k < 0 . Exprimer en fonction de $\,k\,$, $A(k)\,$, l'aire du domaine limité par: le graphe de $\,f\,$, son asymptote et les droites: $x=k\,$ et $x=0\,$

ii) Etudier la limite de A(k) lorsque k tend vers $-\infty$

EXIII

On considère la fonction: $f(x) = (3 - x)e^{-\frac{1}{3}x}$

1)a) Etudier les limites de f aux bornes de son ensemble de définition

b) Donner une équation de l'asymptote au graphe de f

c) Dresser le tableau de variation de f

d) Déterminer une équation de T_3 la tangente au graphe de f au point d'abscisse x=3

2) Construire l'asymptote, la tangente T₃ et le graphe de f

3)a) k > 3. Exprimer en fonction de k, A(k), l'aire du domaine limité par: le graphe de f, son asymptote horizontale, et les droites: x = 3 et x = k

b) Etudier la limite de A(k) lorsque k tend vers $+\infty$

EX IV

On considère la fonction: $f(x) = 1 - 2\ln(-2x + 1)$

1)a) Etudier les limites de f aux bornes de son ensemble de définition

b) Donner une équation de l'asymptote au graphe de f

c) Dresser le tableau de variation de f

d) Déterminer une équation de T_0 la tangente au graphe de f au point d'abscisse x=0

2) Construire l'asymptote, la tangente T₀ et le graphe de f

3)a) Déterminer l'aire du domaine limité par: le graphe de f, l'axe (Ox)

et les droites: x = -2 et x = -1

b)i) $0 \le k \le 0.5$. Exprimer en fonction de $\,k\,$, $A(k)\,$, l'aire du domaine limité par:

le graphe de f, l'axe (Ox) et les droites: x = 0 et x = k

ii) Etudier la limite de A(k) lorsque k tend vers +∞

EX V On considère la fonction définie sur $[0; 2\pi]$ par: $f: x \mapsto 1 + \cos x$

- 1) Construire le graphe de f dans un repère orthonormé
- 2)a) Vérifier que la fonction $F(x) = \frac{1}{2}x + \frac{1}{4}\sin 2x$ est une primitive de $\cos^2 x$
 - b) Soit S la surface limitée par le graphe de f et les axes de coordonnées

Calculer la mesure du volume du solide de révolution engendré par la rotation de S autour de l'axe des abscisses

EX VI

- 1)a) Déterminer le domaine de définition de la fonction: $f(x) = \frac{\cos^2 x}{\sin x}$
- b)i) Démontrer que f est une fonction impaire et périodique de période 2π
 - ii) Démontrer que le graphe de f admet la droite d'équation: $x = \frac{\pi}{2}$, comme axe de symétrie
 - iii) Dresser le tableau de variation de la fonction f sur $\begin{bmatrix} 0 \ ; \ \frac{\pi}{2} \end{bmatrix}$
 - iv) Construire le graphe de f sur $[-\pi ; \pi]$
- 2)a) Déterminer les réels a ; b et c tels que: $\forall x \in \mathbb{R} \setminus \{-1; 1\}$ $\frac{x^2}{x^2 1} = a + \frac{b}{x 1} + \frac{c}{x + 1}$
 - b)i) Calculer l'aire du domaine D , limité par le graphe de f , l'axe des abscisses et les droites d'équations: $x = \frac{\pi}{4}$ et $x = \frac{\pi}{2}$

(On effectuera le changement de variable: $u = \cos t$, dans l'intégrale : $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos^2 t}{\sin^2 t} dt$)

- ii) Calculer la valeur moyenne de f sur $\left[\begin{array}{c} \frac{\pi}{4} \ ; \ \frac{\pi}{2} \end{array}\right]$
- c) Calculer la mesure du volume du solide de révolution engendré par la rotation de D autour de

l'axe des abscisses (On montrera que: $\frac{\cos^4 t}{\sin^2 t} = \frac{1}{\sin^2 t} - 2 + \sin^2 t$,

puis on effectuera le changement de variable: $u = \tan t$, dans l'intégrale: $\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{\sin^2 t} dt$

EX VII a) Déterminer le domaine de définition de f , puis déterminer f'

i)
$$f(x) = \frac{x^2 + x - 1}{2x^2 + x - 3}$$

ii)
$$f(x) = \frac{1}{x^2 - 1}$$

iii)
$$f(x) = 2x - 1 + \frac{1}{x+3}$$

iv)
$$f(x) = (2x - 3)^3$$

v)
$$f(x) = 1 + \sqrt{3x - 1}$$

vi)
$$f(x) = \sqrt{4 - x^2}$$

vii)
$$f(x) = (2x-7)^{\frac{3}{2}}$$

viii)
$$f(x) = \frac{1}{\sqrt{-2x+1}}$$

ix)
$$f(x) = 1 - 2.\cos(2x - 1)$$

x)
$$f(x) = -2 + 3.\sin(\pi x - 1)$$

xi)
$$f(x) = \cos^2 x$$

xii)
$$f(x) = \frac{\sin x}{\cos x}$$

xiii)
$$f(x) = 1 - \ln(-3x + 1)$$

xiv)
$$f(x) = -x^2 \ln(-\frac{x}{2} + 1)$$

$$xv) f(x) = \log x$$

xvi)
$$f(x) = -2 \cdot \frac{\ln x}{x^2}$$

xvii)
$$f(x) = 2e^{2x} - e^x + 3$$

xvii)
$$f(x) = 2e^{2x} - e^{x} + 3$$
 xviii) $f(x) = \frac{e^{\frac{1}{2}x} + e^{-\frac{1}{2}x}}{3}$

xix)
$$f(x) = (3x - 1)e^{2-x}$$

 $\ln|x-1| + |x|e^{x^2}$

$$f(x) = (-2x^2 + 3x + 1)e^{-2x+1}$$

$$xxi) f(x) =$$

b) Déterminer le domaine de définition de f , puis déterminer F une primitive de f

i)
$$f(x) = (4x - 5)(2x^2 - 5x + 1)$$
 ii) $f(x) = \frac{1}{(x + 3)^2}$

ii)
$$f(x) = \frac{1}{(x+3)^2}$$

iii)
$$f(x) = \frac{1}{(2x-1)^3}$$

iv)
$$f(x) = \frac{1}{\sqrt{3x - 1}}$$

v)
$$f(x) = (2x - 2)\sqrt{x - 1}$$

vi)
$$f(x) = 1 - \cos(2x + 1)$$

vii)
$$f(x) = 3 - 2\sin(-x + 1)$$

viii)
$$f(x) = \frac{1}{2x-1}$$

ix)
$$f(x) = \frac{3x-1}{-2x+5}$$

x)
$$f(x) = x + 1 + \frac{2}{1 - 3x}$$

xi)
$$f(x) = \frac{x^2 + x - 1}{2x - 3}$$

xii)
$$f(x) = \frac{x}{x^2 + 1}$$

xiii)
$$f(x) = \frac{x^2 - 3x - 2}{x^2}$$

xiv)
$$f(x) = 4e^{3x-1}$$

$$xv) f(x) = x^2 - x + 1 + 2e^{-x+1}$$

xvi)
$$f(x) = 5e^{2x} - 3e^x + 2$$

xvii)
$$f(x) = (x + 1)e^{-3x+2}$$

xviii)
$$f(x) = (x^2 + x + 1)e^{2x}$$

$$xix$$
) $f(x) = log x$

xx)
$$f(x) = ln(2x + 3)$$
 (3 manières différentes)

xxi)
$$f(x) = \ln(ax+b)$$
 (2 manières différentes)

$$xxii) f(x) = x.lnx$$

xxiii)
$$f(x) = \frac{\ln x}{x}$$

$$xxiv) f(x) = x \sqrt{x-2}$$

$$xxv) f(x) = \frac{x}{\sqrt{2x-1}}$$

$$xxvi) f(x) = x.sin 3x$$

xxvii)
$$f(x) = x^2 \cos x$$

xxvii)
$$f(x) = x^2 \cos x$$
 xxviii) $f(x) = \frac{1}{\sqrt{1 - x^2}}$

xxix)
$$f(x) = \frac{1}{1+x^2}$$

$$(xxx) f(x) = \frac{x-2}{x^2+1}$$

xxxi)
$$f(x) = \frac{1}{x^2 + 2x + 2}$$
 (on calculera: $\int_0^x \frac{1}{t^2 + 2t + 2} dt$, avec changement de variable: $t = u - 1$)

xxxii)
$$f(x) = \frac{1}{\sqrt{x^2 + 4}}$$
 (on calculera: $\int_0^x \frac{1}{\sqrt{t^2 + 4}} dt$, avec changement de variable: $u = t + \sqrt{t^2 + 4}$

VIII

Calculer les intégrales:

i)
$$\int_{1}^{5} (|x| + |x + 3|) dx$$

ii)
$$\int_{1}^{e} (x+1) \ln x \, dx$$

iii)
$$\int_{-1}^{\frac{e-3}{2}} \frac{2x^2 + x - 4}{2x + 3} dx$$

EX IX: 1) On considère les fonctions f_a d'une variable réelle indicées par le paramètre a réel

$$f_a(x) = a - \ln\left(\frac{1}{3}x + 1\right)$$

- a) Déterminer l'ensemble de définition de fa
- b) Etudier le sens de variation de fa sur son ensemble de définition

2) On considère les fonctions ga d'une variable réelle, indicées par le paramètre a réel

$$g_a(x) = \begin{cases} e^{-\frac{1}{3}x} & \text{, si } x \leq 0 \\ f_a(x) & \text{, si } x > 0 \end{cases}$$
 où f_a est définie au 1)

- a) Déterminer a pour que g_a soit continue en x = 0
- b) Pour la valeur de a obtenue au a) étudier la dérivabilité de g_a en x=0
- c) Déterminer le zéro de g₁
- d) Le graphe de g₁ présente-t-il des points d'inflexion?
- e) Etudier les limites de g₁ aux bornes de son ensemble de définition
- f)i) Etudier le sens de variation de g₁
- ii) Construire le graphe de g₁ dans l'intervalle [-6; 6]
- g) Calculer l'aire de la surface délimitée par le graphe de g₁ et les axes de coordonnées

EX X: On donne la fonction d'une variable réelle $x : f : x \mapsto (x^2 - 1).e^{-x}$

On désigne par F le graphe de f dans un repère orthonormé

- a) Déterminer le domaine de définition, les zéros, les extremums de f ainsi que l'asymptote de f
- b) Tracer F
- c) Calculer l'aire du domaine borné compris entre F et l'axe Ox

EX XI: On considère les fonctions d'une variable réelle indicées par le paramètre p réel non nul:

$$f_p: x \mapsto e^{px}.(x-3)$$

a) Etudier en fonction de $\,p\,$, le caractère croissant ou décroissant de $\,f_p\,$

Déterminer les zéros et les extremums éventuels de f_p

b) Quelle valeur faut-il donner à p afin que f_p ait un extremum pour x = 0

Pour la suite de l'exercice, on fait p = 1

c)i) Dans un repère orthonormé, tracer le graphe F de la fonction $f: x \mapsto e^x \cdot (x-3)$

ii) Déterminer une équation de la tangente d'inflexion à F

iii) Calculer l'aire de la surface délimitée par F et les axes de coordonnées

d) Parmi les fonctions $g: x \mapsto m.\frac{1}{x} + n$ (m et n réels), il en existe une dont le graphe est tangent à F au point (3;0). Calculer dans ce cas m et n

EX XII: On donne la fonction d'une variable réelle $x: f: x \mapsto \begin{cases} (x^2 + 1)e^x & \text{si } x \le 0 \\ 1 - x \ln x & \text{si } x > 0 \end{cases}$

F est la courbe représentative de f dans un repère orthonormé (unité 2 cm)

a) Etudier: i) La continuité de f en x = 0

ii) La dérivabilité de f en x = 0

b)i) Etudier la fonction f (Limites aux bornes de son domaine de définition, l'asymptote de F, sens de variation de f, extremum et les points d'inflexion de F)

ii) Esquisser le graphe de f

c)i) Déterminer l'abscisse des points d'intersection de F et de la droite d : $y = 1 - \frac{x}{2}$

ii) $0 < \lambda \le e^{\frac{1}{2}}$

Exprimer en fonction de λ , l'aire $A(\lambda)$ du domaine $D = \left\{ M(x;y) \middle| \begin{cases} \lambda \le x \le e^{\frac{1}{2}} \\ 1 - \frac{x}{2} \le y \le 1 - x \ln x \end{cases} \right\}$

iii) Déterminer $\lim_{\lambda \to 0^+} A(\lambda)$

EX XIII: 1) Résoudre l'équation différentielle (E) (y est une fonction de x)

i) (E): 5y' = 2y + 1

sur: R

et y(0) = 1

ii) (E): 2y'' + 4.5y = 0

sur: R

 $y(\frac{\pi}{6}) = 1$ et $y'(\frac{\pi}{6}) = -1$

EX XIV: On considère la fonction d'une variable réelle définie par: f: $x \mapsto \frac{x^2 - 3}{x + 2}$

On appelle F la représentation graphique de f dans le repère orthonormé Oxy

- a) Déterminer l'ensemble de définition de f, les coordonnées des points d'intersection de F avec les axes de coordonnées, et une équation de chaque asymptote à la courbe F
- b) Tracer F
- c) Calculer l'aire de la partie du plan délimitée par la courbe F et l'axe des abscisses

- 1)a) Déterminer les réels a et b tels que: pour tout réel x : $\frac{1}{x(1+x^2)} = \frac{a}{x} + \frac{bx}{x^2+1}$
 - b) Déterminer une primitive de la fonction: $x \mapsto \frac{1}{x(1+x^2)}$
- 2) Déterminer par parties une primitive de la fonction: $x \mapsto \frac{2x \ln x}{(1 + x^2)^2}$

1) On considère la fonction d'une variable réelle définie par: f: $x \mapsto (\ln x + 1) \ln x$

a) Montrer que:
$$\forall x \in]0$$
; $+\infty[$ $2\ln x + 1 \ge 0 \iff x^2 \ge \frac{1}{e}$

$$2\ln x + 1 \ge 0 \iff x^2 \ge \frac{1}{e}$$

- b) Dresser le tableau de variation de f
- c) Résoudre l'équation f(x) = 0
- d) Déduire de ce qui précède le tableau de signe de f
- 2) On considère la fonction d'une variable réelle définie par: $F: x \mapsto x(f(x) 2 \ln x + 1)$

Dresser le tableau de variation de F

YOUSSEFBOULILA	SERIE DE REVISION	4M
	@ 2011	