Ministère de l'éducation et de la formation Direction régionale de Monastir Lycées: 7nov jemmel / Jemmel 7 Nov Zeramdine / Benenbodher / Beni hassen / Lamta

DEVOIR DE CONTRÔLE N°1

6880

Date: 06-11-09

Durée: 2 heures

Classes:

4èmes M; Sc.Exp.;&T

Matière:

Sciences .Physiques

Indications et consignes générales

- Le sujet comporte 2 exercices de chimie et 2 exercices de physique
- L'usage des calculatrices non programmables est autorisé.

CHIMIE: (7 Points)

EXERCICE N°1: (3.5pts)

L'oxydation des L'oxydation des ions l' par l'eau oxygénée H_2O_2 , en milieu acide est une réaction totale modélisée par l'équation:

$$2I^{-} + H_2O_2 + 2H_3O^{+}$$
 _______ $I_2 + 4H_2O$

Trois expériences sont réalisées suivant les différentes conditions expérimentales indiquées dans le tableau suivant :

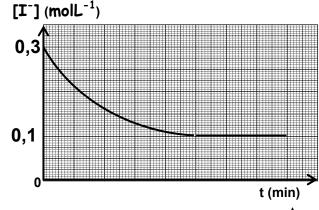
Numéro de l'expérience	1	2	3
n ₀ (l ⁻) (10 ⁻³ mol)	5	9	9
n ₀ (H ₂ O ₂) (10 ⁻³ mol)	2	2	4
Température (°c)	25	40	40

Dans les trois expériences le volume du mélange est le même et les ions H₃O⁺ sont utilisés en excès. L'étude cinétique de l'une des trois expériences a donné la courbe (a) du document-1- de la feuille annexe.

- 1° a- Définir la vitesse instantanée de la réaction. L'exprimer en fonction de n(l₂). Déterminer sa valeur à t=0min.
 - b- Comment évolue cette vitesse au cours du temps. Quel facteur cinétique est mis en évidence par l'évolution de cette vitesse ?
- 2°) a- Compléter le **tableau** descriptif-1- d'évolution sur la feuille annexe.
 - b- Montrer que H₂O₂ est le réactif limitant dans les trois expériences.
 - c- Déterminer n_f(l₂) final dans les trois expériences.
 - d- Montrer que la courbe (a) correspond à l'expérience (3).
- 3°) Comparer, en le justifiant, les vitesses initiales des trois expériences, Tracer sur le même graphique du document-1- de la feuille annexe, les allures des courbes $n(l_2) = f(t)$ pour les expériences (1) et (2).

EXERCICE N°2: (3.5pts)

Les ions iodure (I^-) s'oxydent par les ions peroxodisulfate $S_2O_8^{2-}$ selon une réaction lente et totale représentée par l'équation suivante :


$$S_2O_8^{2-} + 2I^- \longrightarrow 2SO_4^{2-} + I_2$$
 (1)

 $S_2O_8^{2^-} + 2 I^-$ — 2 $SO_4^{2^-} + I_2$ (1) On réalise un mélange S à partir d'un volume $V_1 = 30 mL$ d'une solution d'iodure de potassium KI de concentration molaire C₁ =0.5 molL⁻¹, d'un volume V' =5mL d'une solution très diluée d'empois d'amidon et d'un volume V₀ =5mL d'une solution de thiosulfate de sodium Na₂S₂O₃ de concentration $C_0 = 2.10^{-1} \text{ mol.L}^{-1}$.

À l'instant $t_0 = 0$, on ajoute au mélange un volume $V_2 = 10 \text{mL}$ d'une solution de peroxodisulfate de sodium $K_2S_2O_8$ de concentration C_2 , à l'instant de date t_1 =4 mn apparaît une coloration bleue. On rappelle que la réaction du dosage de l₂ par Les ions thiosulfates S₂O₃²-est une réaction totale et instantanée d'équation:

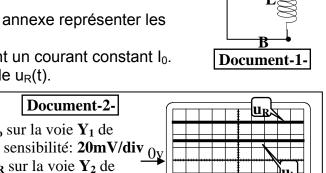
$$2 S_2 O_3^{2-} + I_2 \longrightarrow 2I^- + S_4 O_6^{2-}$$
 (2)

- 1°) Compléter le tableau descriptif-2- correspondant à la réaction (1) (en utilisant l'avancement volumique y) sur la feuille annexe.
- 2°) a- Montrer que le nombre de moles de diiode formé par la réaction (1) à l'instant t₁=4mn est $n_{t1}(I_2) = \frac{c_0 v_0}{2}$
 - **b-** Calculer la concentration [I₂] to diiode dans le mélange S à l'instant t₁=4mn.
- 3°) L'étude expérimentale a permis de tracer la courbe régissant les variations de la concentration des ions iodure au cours du temps. Voir document ci contre.
 - a- Préciser, en le justifiant le réactif limitant.
 - b- Déterminer graphiquement les concentrations initiale [1]₀ et finale [1]_f en ions iodure dans le mélange.
 - c- Déduire la concentration initiale des ions peroxodisulfate [S₂O₈²-]₀ dans le mélange. Déterminer C2.

Physique: (13 Points)

Exercice n°1:(pts)

On monte en série un générateur G, un résistor de résistance R=300 Ω et une bobine (B) d'inductance L et de résistance r. Voir document-1 -Un oscilloscope bicourbe branché au circuit donne après le réglage nécessaire les oscillogrammes des tensions u_b(t) aux bornes de la bobine (B) sur la voie Y₁ et u_R(t) aux bornes du résistor sur la voie Y₂.


- 1°) Sur le schéma électrique du document-2 de la feuille annexe représenter les branchements à l'oscilloscope.
- 2°) Le générateur G est un générateur de courant débitant un courant constant l₀. Le document-2- donne les oscillogrammes de $u_b(t)$ et de $u_R(t)$.
 - **a-** Déterminer graphiquement $u_b(t)$ et de $u_R(t)$. Déduire I₀.
 - b-La loi d'ohm relative à une bobine est u_{bobine}= -**e**+ri avec **e** : f.é.m d'auto induction.

Exprimer **e** en fonction de L et $\frac{di(t)}{dt}$

- c- Montrer dans ce cas que la bobine (B) se comporte comme un résistor de résistance r= $\frac{\kappa}{200}$
- 3°) Le générateur G est un générateur de courant variable. Le document-3- donne les oscillogrammes de $u_b(t)$ et de $u_R(t)$.
 - a- Montrer qu'à toute instant la bobine (B) est siége du phénomène d'auto induction électromagnétique.
 - **b-** On néglige la résistance r de la bobine (B)
 - ((B) est purement inductive). Déterminer graphiquement les deux valeurs e₁ et e₂ de la

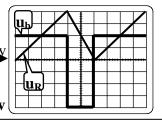
f.é.m d'auto induction crées dans la bobine (B) durant une période.

c- Montrer que : e = $-\frac{L}{R} \frac{du_R}{dt}$. En déduire la valeur de L de la bobine (B). E

Document-3-

Document-2-

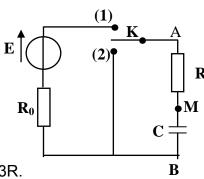
* $\mathbf{u_b}$ sur la voie $\mathbf{Y_1}$ de


* u_R sur la voie Y₂ de

sensibilité :2V/div * Base des temps:0,5ms/div

* u_b sur la voie Y₁ de sensibilité:0,5 V/div 0y

* **u**_R sur la voie **Y**₂ de sensibilité:1V/div


* Base des temps:0,5ms/div

Exercice n°2: (pts)

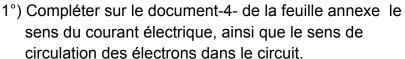
On dispose au laboratoire d'un dipôle RC .Pour déterminer expérimentalement la valeur de C et de R on réalise le circuit électrique ci contre comportant :

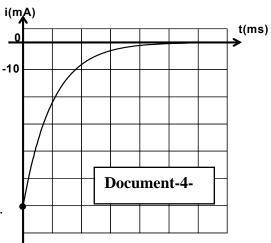
- Le dipôle RC ; un interrupteurs K.
- ❖ Un générateur de tension de f.é.m E et un résistor de résistance R₀=3R.

I/ La charge du condensateur par le générateur de tension :

Le condensateur étant initialement déchargé. A t=0s, on bascule l'interrupteur K en position 1. Un dispositif d'acquisition de données relié à un ordinateur donne le document-3- de la feuille annexe qui représente la variation de la tension aux bornes du condensateur au cours des temps.

- 1°) Établir l'équation différentielle $\mathbf{E} = \tau_0 \frac{\mathbf{d}\mathbf{u}_c}{\mathbf{d}\mathbf{t}} + \mathbf{u}_c$ vérifiée par la tension \mathbf{u}_c aux bornes du condensateur pendant la phase de charge. Avec $\tau_0 = (\mathbf{R} + \mathbf{R}_0)\mathbf{C}$.
- 2°) Une solution de cette équation est de la forme : $u_c(t) = A(1 e^{-\alpha t})$, compte tenu de la condition initiale relative à la charge du condensateur.


En vérifiant que cette expression est solution de l'équation différentielle, identifier A et α en fonction de E, R, R₀et C.


- 3°) En justifiant la réponse par les constructions nécessaires sur le document- 3- de la feuille annexe, déterminer :
 - a- La valeur de la f.é.m E du générateur.
 - **b-** La valeur de la constante de temps τ_0
 - **c-** Déterminer le temps de charge t_c, si on admet que le condensateur est complètement chargé lorsqu'il a acquis 99 % de sa charge maximale .

Le condensateur précèdent est complètement chargé. A une nouvelle origine des temps t= 0s on bascule l'interrupteur K en position 2.

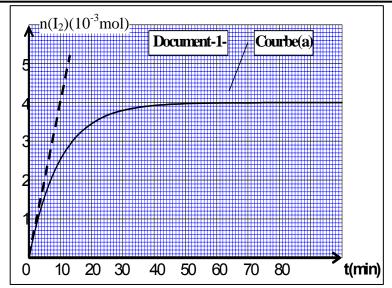
Le dispositif d'acquisition donne le document-4 – qui représente l'évolution du courant circulant dans le circuit .

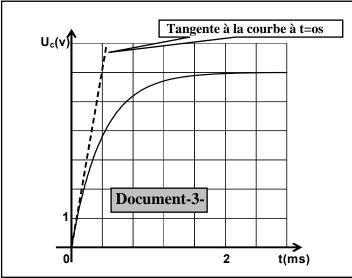
2°) L'équation différentielle vérifiée par la tension uc aux bornes du condensateur pendant cette

phase devient RC $\frac{du_c}{dt}$ + u_c =0 . La solution de cette équation différentielle est $u_c(t)$ =E $e^{-\frac{t}{\tau}}$ avec τ =RC constante du temps du dipôle RC.

- **a**-.montrer que i(t)= $\frac{E}{R} e^{-\frac{t}{\tau}}$.
- **b-** Déterminer à partir du document-4 -l'intensité du courant I_0 à l'origine des temps. En déduire R , R_0 et $\ C$.

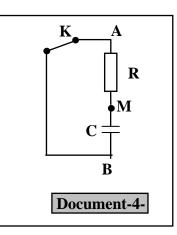
Bon Travail

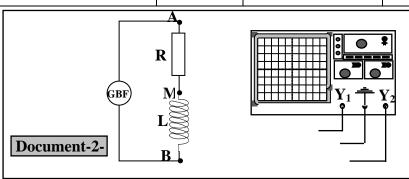

Sciences Physiques


Devoir de contrôle n°1 FEUILLE ANNEXE

4 Sc+M+Tech

Nom :..... Prénom :


classe:.....


Tableau déscriptif-1-

équation de réaction		$2I^{-} + H_2O_2 + 2H_3O^{+} \longrightarrow I_2 + 4H_2O$				
état du système	Avan ceme nt	Quantité de matière en mole				
état initial		$n_0(I^{-})$	$n_0(H_2O_2)$	excès		
état intermédiaire				excès		
état final				excès		

Tableau déscriptif-2-

équation de la réaction		S ₂ O ₈ ²⁻	+	2 l ⁻		2 SO.	4 ²⁻ + I ₂
état du système	Avancement volumique y en molL ⁻¹	Concentrations en mol.L ⁻¹					
état initial		$[S_2O_8^2]_0$		[[]	ı		
état intermédiaire							
état final							

