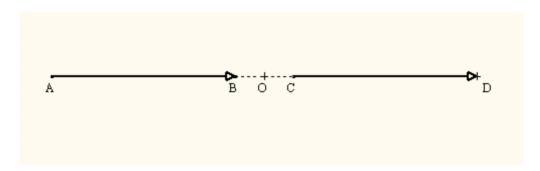
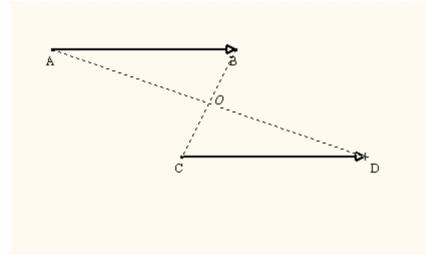
Rappel et compléments:

Définition:

Soient (A, B) et (C, D) deux bipoints du plan tels que les segments [AD] et [BC] ont, alors ces bipoints représentent un même objet mathématique appelé <u>vecteur</u> et noté \overrightarrow{AB} ou \overrightarrow{CD} . On écrit $\overrightarrow{AB} = \overrightarrow{CD}$.



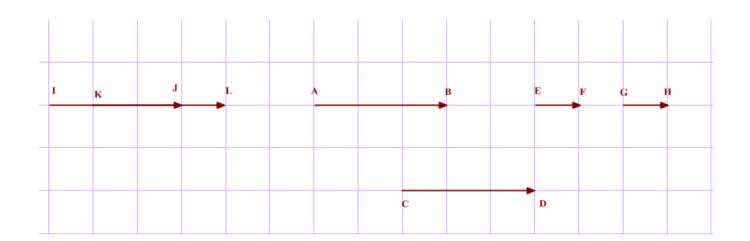


Les bipoints (A, A) et (B, B) représentent un même vecteur appelé et noté et noté

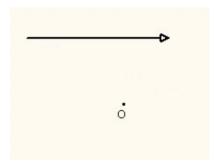
Egalité vectorielle :

Soient A, B, C et D quatre points du plan.

• $(\overrightarrow{AB} = \overrightarrow{CD})$, si et seulement si, $(dir\overrightarrow{AB} = dir\overrightarrow{CD})$, sens de \overrightarrow{AB} = sens de \overrightarrow{CD} et AB = CD) Citer les vecteurs égaux sur la figure ci-dessous :



- $(\overrightarrow{AB} = \overrightarrow{CD})$ équivaut à \overrightarrow{A} = \overrightarrow{D} (permutation des lettres médianes).
- Si de plus A, B et C ne sont pas alignés alors $(\overrightarrow{AB} = \overrightarrow{CD})$ équivaut à ABDC est
- $(\overrightarrow{AB} = \overrightarrow{BC})$ équivaut à
- $(\overrightarrow{AB} = \overrightarrow{AC})$ équivaut à
- Etant donnés un vecteur \vec{u} et un point O, il existe un unique point M tel que $\overrightarrow{OM} = \vec{u}$

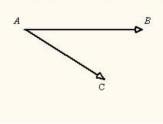


Addition des vecteurs :

• Soit A un point du plan et soient \vec{u} et \vec{v} deux vecteurs de représentants respectifs \overrightarrow{AB} et \overrightarrow{AC} . On appelle vecteur somme de \vec{u} et \vec{v} , le vecteur $\vec{w} = \overrightarrow{AD}$ où D est le point tels que [BC] et [AD] aient même milieu.

On note $\vec{w} = \vec{u} + \vec{v}$

Construire $\vec{w} = \vec{u} + \vec{v}$ sur la figure ci – contre :



- Pour tous points A, B et C du plan, on a : $\overrightarrow{AB} + \overrightarrow{BD} = \dots$, c'est la relation de
- Pour tous vecteurs \vec{u} , \vec{v} et \vec{w} , on a : $\vec{u} + \vec{v} = \dots$; $(\vec{u} + \vec{v}) + \vec{w} = \dots$; $\vec{u} + \vec{0} = \dots$; \vec

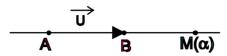
Exercice:

Soient M, N, P et Q quatre points du plan. Etablir chacune des égalités suivantes :

$$\overrightarrow{MP} + \overrightarrow{NQ} = \overrightarrow{MQ} + \overrightarrow{NP}$$
; $\overrightarrow{MP} - \overrightarrow{NQ} = \overrightarrow{MN} - \overrightarrow{PQ}$; $\overrightarrow{MN} - \overrightarrow{QP} + \overrightarrow{NP} - \overrightarrow{MQ} = \overrightarrow{0}$.

Multiplication d'un vecteur par un réel :

• Soient un vecteur non nul \vec{u} , deux points A et B du plan tels que $\overset{\rightarrow}{AB} = \vec{u}$ et un réel α . On désigne par M le point de la droite (AB) d'abscisse α dans le repère (A, B).



Le produit du vecteur \overrightarrow{u} par le réel α est le vecteur $\overrightarrow{v} = \overrightarrow{AM}$. On note $\alpha . \overrightarrow{u} = \overrightarrow{v}$ ou $\alpha . \overrightarrow{AB} = \overrightarrow{AM}$. Si $\overrightarrow{u} = \overrightarrow{0}$ alors pour tout réel α , $\alpha . \overrightarrow{0} = \overrightarrow{0}$. Lorsque $\alpha = 0$ on a M = A et $0 . \overrightarrow{u} = \overrightarrow{0}$.

• Soit (A, B) un bipoint tel que $A \neq B$. Construire C tel que $\overrightarrow{AC} = \alpha \cdot \overrightarrow{AB}$ lorsque $\alpha = 4$; $\alpha = \frac{3}{4}$; $\alpha = -2$ et $\alpha = -\frac{3}{4}$.

• Pour tous réels α et β et vecteurs \overrightarrow{u} et \overrightarrow{v} on a :

• Deux vecteurs \overrightarrow{u} et \overrightarrow{v} sont colinéaires) équivaut à (il existe un réel α tel que $\overrightarrow{u} = \alpha \overrightarrow{v}$ ou $\overrightarrow{v} = \alpha \overrightarrow{u}$)

Exercice:

1. Simplifier les relations vectorielles suivantes :

$$\vec{w} = 2(\vec{u} + 3\vec{v}) + 4(2\vec{u} - \vec{v}) - 9\vec{u} \; ; \quad \vec{w} = \frac{1}{2}(3\vec{u} - 5\vec{v}) + 5(\frac{1}{2}\vec{u} - \frac{3}{4}\vec{v}) - \frac{1}{3}(3\vec{u} - 6\vec{v}) \, .$$

- 2. Soit ABCD un parallélogramme de centre O.
 - a) Marquer les points E et F tels que $\overrightarrow{AE} = \frac{1}{3} \overrightarrow{AB}$ et $\overrightarrow{CF} = \frac{1}{3} \overrightarrow{CD}$.
 - b) Quelle est la nature du quadrilatère AECF?
 - c) Montrer que $\overrightarrow{EF} = 2\overrightarrow{EO}$.

Vecteurs et configurations géométriques :

Milieu:

I est le milieu du segment [AB] équivaut à $\overrightarrow{IA} + \overrightarrow{IB} = \dots \text{OU} \overrightarrow{AI} = \dots \text{OU} \overrightarrow{AB} = \dots$

Exercices 3 et 7 page 90.

Parallélisme:

Deux droites (AB) et (CD) sont parallèles, si et seulement si, \overrightarrow{AB} et \overrightarrow{CD} sont

Exercice 6 page 90.

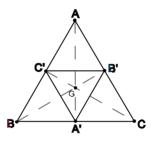
Alignement:

Trois points A, B et C sont alignés, si et seulement si, \overrightarrow{AB} et \overrightarrow{AC} sont

Exercices 4 et 5 page 90.

Centre de gravité:

Soit ABC un triangle et G un point du plan. Une condition nécessaire et suffisante pour que G soit le centre de gravité du triangle ABC est : $\vec{GA} + \vec{GB} + \vec{GC} = \dots$



Exercice:

On considère un triangle ABC et M un point du plan tel que : $4\overrightarrow{MA} - 3\overrightarrow{MB} - 3\overrightarrow{MC} = \overrightarrow{0}$.

- a) Montrer que $\overrightarrow{AM} = \frac{3}{2} (\overrightarrow{AB} + \overrightarrow{AC})$.
- b) Soit I le milieu de [BC], montrer que \overrightarrow{AM} et \overrightarrow{AI} sont colinéaires.
- c) On désigne par G le point du plan tel que $\overrightarrow{GI} = \overrightarrow{MG}$ et par B' l'image de B par la symétrie de centre M. Montrer que $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GB}' = \overrightarrow{0}$. Que peut on conclure ?

Exercice 14 page 91.

Activité 43 page 81

Enoncé de THALES:

Soit ABC un triangle, M est un point de (AB) distinct de A. La parallèle à (BC) passant par M coupe (AC) en N.

Si
$$\overrightarrow{AM} = x\overrightarrow{AB}$$
 alors $\overrightarrow{AN} = x\overrightarrow{AC}$ et $\overrightarrow{MN} = x\overrightarrow{BC}$.

Activité 44 page 81

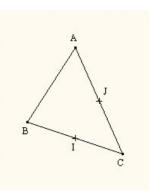
Bases de l'ensemble des vecteurs du plan:

Définition :

On appelle base de l'ensemble des vecteurs tout couple de vecteurs <u>non colinéaires</u>.

Exemples

Citer de la figure ci contre des couples des vecteurs formant une base.



Le couple $(\overrightarrow{AB}, \overrightarrow{IJ})$ forme t – il une base de l'ensembles des vecteurs ? Pourquoi ?

.....

Composantes d'un vecteur dans une base :

Soit (\vec{i}, \vec{j}) une base du plan,

 \vec{u} un vecteur et A un point. Construire les points B, C et M tels que :

$$\overrightarrow{AB} = \overrightarrow{i}$$
, $\overrightarrow{AC} = \overrightarrow{j}$ et $\overrightarrow{AM} = \overrightarrow{u}$

Soit M_1 le projeté du point M sur (AB)

parallèlement à (AC) et M_2 le projeté de M sur (AC) parallèlement à (AB).

Ecrire \overrightarrow{AM} à l'aide de $\overrightarrow{AM_1}$ et $\overrightarrow{AM_2}$

.....

......

En déduire qu'il existe deux réels x et y tels que :

Définition

 $\vec{u} = x\vec{i} + y\vec{j}$.

Soit (\vec{i}, \vec{j}) une base du plan.

Pour tout vecteur \vec{u} , il existe un couple unique de réels (x, y) tels que $\vec{u} = x\vec{i} + y\vec{j}$.

Ce couple est appelé couple de composantes de \vec{u} dans la base (\vec{i}, \vec{j}) et on note $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}_{(\vec{i}, \vec{j})}$.

Propriétés

$$\bullet \qquad \vec{0} \bigg(\ \ \, \bigg)_{\vec{(i,j)}} \ \, ; \ \, \vec{i} \bigg(\ \ \, \bigg)_{\vec{(i,j)}} \ \, ; \ \, \vec{j} \bigg(\ \ \, \bigg)_{\vec{(i,j)}}$$

• Si
$$\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}_{(\vec{i},\vec{j})}$$
 et $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}_{(\vec{i},\vec{j})}$ alors $\vec{u} = \vec{v} \Leftrightarrow \dots$; $\vec{u} + \vec{v} \begin{pmatrix} x \\ y' \end{pmatrix}_{(\vec{i},\vec{j})}$ et $\alpha \vec{u} \begin{pmatrix} x \\ y' \end{pmatrix}_{(\vec{i},\vec{j})} \alpha \in \mathbb{R}$.

Exercice 4 et 5 page 82.

Condition analytique de colinéarité de deux vecteurs :

 (\vec{i}, \vec{j}) une base; $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}_{(\vec{i}, \vec{j})}$ et $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}_{(\vec{i}, \vec{j})}$. Si \vec{u} et \vec{v} sont colinéaires. Montrer que xy' - x'y = 0

<u>Propriété</u>

$$\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}_{(i,j)}$$
 et $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}_{(i,j)}$ sont colinéaires, si et seulement si, $xy' - x'y = 0$.

Le réel xy'-x'y est appelé déterminant des vecteurs \vec{u} et \vec{v} on note $d\acute{e}t(\vec{u},\vec{v}) = \begin{vmatrix} x & x' \\ y & y' \end{vmatrix} = xy'-x'y$.

Exercice 6 page 82.

Repères du plan:

Définition :

Soit O un point du plan et $B = (\vec{i}, \vec{j})$ une base de l'ensemble des vecteurs.

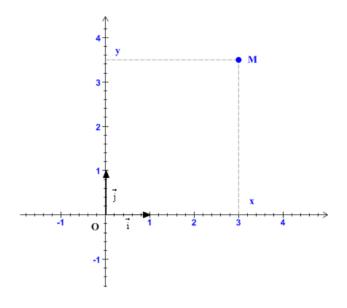
Le triplet $(\vec{O}, \vec{i}, \vec{j})$ est appelé repère cartésien du plan.

A tout point M du plan, on associe un couple unique de réels

(x, y) tel que $\overrightarrow{OM} = x\overrightarrow{i} + y\overrightarrow{j}$.

(x, y) est le couple des coordonnées du point M dans le repère

 (O,\vec{i},\vec{j}) . On note $M(x,y)_{(O,\vec{i},\vec{j})}$.



Composantes d'un vecteur défini par un bipoint :

Soient deux points $M(x_M, y_M)$ et $N(x_N, y_N)$ dans le plan muni d'un repère cartésien $R = (O, \vec{i}, \vec{j})$. Le vecteur \overrightarrow{MN} a pour composantes $(x_N - x_M)$ et $(y_N - y_M)$ dans la base $B = (\vec{i}, \vec{j})$. On note $\overrightarrow{MN} \begin{pmatrix} x_N - x_M \\ y_N - y_M \end{pmatrix}_B$.

Activités 26 et 27 page 76.

Norme d'un vecteur :

Soit $\vec{u} = \overrightarrow{AB}$ un vecteur du plan, on appelle norme de \vec{u} la distance AB. On note $||\vec{u}|| = AB$.

Si $\|\vec{u}\| = 1$ alors \vec{u} est dit unitaire ou normé.

Propriétés

$$||\vec{u}|| = 0 \iff \dots$$
; $||\vec{\alpha}\vec{u}|| = \dots$; $||\vec{u} + \vec{v}|| \dots$ $||\vec{u}|| + ||\vec{v}||$

Repère orthonormé:

Un repère (O, \vec{i}, \vec{j}) est dit orthonormé lorsque $\{\vec{i} \perp \vec{j} \mid |\vec{i}| = |\vec{j}| = 1\}$

Activité 31 page 77.

Distance de deux points dans un repère orthonormé:

Activité 32 page 78.

Propriétés

Le plan P est muni d'un repère orthonormé (O, \vec{i} , \vec{j}). On note B = (\vec{i} , \vec{j}).

* Si
$$\overrightarrow{u} \begin{pmatrix} a \\ b \end{pmatrix}_{R}$$
 alors $\| \overrightarrow{u} \| =$

* Si
$$M(x_M, y_M)$$
 et $N(x_N, y_N)$ alors $MN = \dots$

Condition analytique d'orthogonalité de deux vecteurs :

Activité 34 page 78.

Si
$$\stackrel{\rightarrow}{\mathrm{u}} \left(\begin{array}{c} a \\ b \end{array} \right)_{\!B}$$
 et $\stackrel{\rightarrow}{\mathrm{v}} \left(\begin{array}{c} a' \\ b' \end{array} \right)_{\!B}$ deux vecteurs dans une base orthonormée. On a :
$$\left(\stackrel{\rightarrow}{\mathrm{u}} \text{ et } \stackrel{\rightarrow}{\mathrm{v}} \text{ sont orthogonaux } \right) \text{ équivaut à } \left(\begin{array}{c} a \ a' \ + \ b \ b' \ = \ 0 \end{array} \right).$$

Exercice

Dans le plan rapporté à un repère orthonormé (O, \vec{i}, \vec{j}) , on considère les points : A (-2, 1); B (3, 6); C (4, -1).

- 1. Calculer les coordonnées du point D tel que ABCD soit un parallélogramme. Quel est le centre I de ce parallélogramme ?
- 2. Montrer que (AC) ⊥ (BD). Quelle est la nature du parallélogramme ABCD ?