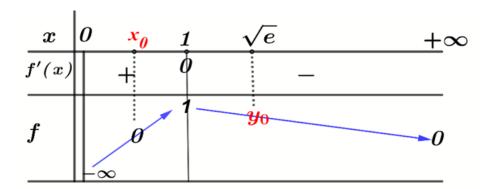
Devoir de Contrôle N°2 4ème Sciences 1 et 2

Lycée Ghraiba (Sfax 1)

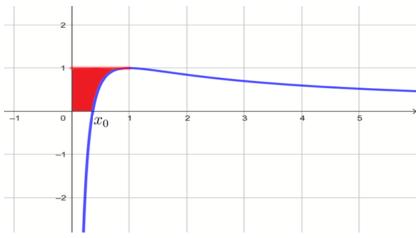
Durée 2 heures

Exercice N° 1 (7 points)

On considère la fonction f définie sur $]0,+\infty[$ par $f(x)=\frac{1+\ln x}{x}$ on désigne par (C_f) sa courbe dans un repère orthonormé $(O,\overrightarrow{i},\overrightarrow{j})$ tel que $||\overrightarrow{i}||=||\overrightarrow{j}||=2cm$. On donne ci-dessous le tableau de variation de f:



- \bigcirc Calculer x_0 et y_0 indiqués dans le tableau .
 - b Déterminer les asymptotes à la courbe (C_f) représentative de f.
 - C Déterminer suivant le paramètre réel m, le nombre de solution de l'équation : $mx \ln x 1 = 0$
- 2 Dresser le tableau de signe de f(x) pour tout $x \in]0, +\infty[$.
- 3 a Écrire l'équation de la tangente (T) à (C_f) au point d'abscisse x_0 .
 - b Montrer que le point d'abscisse \sqrt{e} est le seul point d'inflexion de (C_f) .
- Calculer , en cm^2 , l'aire A de la partie du plan limitée par (C_f) , l'axe des abscisses et les deux droites d'équations : $x=x_0$ et x=1
 - b On a représenté au dessous la courbe (C_f) . Déduire, en cm^2 , l'aire de la partie du plan colorée.



Exercice N° 2 (7 points)

Soient G la fonction définie sur [-1,1] par $G(x)=\int_0^x\sqrt{1-t^2}dt$ et F la fonction définie sur $[0,\pi]$ par $F(x)=G(\cos x)$.

- 1 (a) Montrer que F est dérivable sur $[0,\pi]$ et que $F'(x)=-\sin^2 x$ pour tout $x\in[0,\pi]$.
 - **b** En déduire que pour tout $x \in [0, \pi]$, $F(x) = \frac{1}{4} (\pi 2x + \sin(2x))$.
- \bigcirc Vérifier que $\int_0^1 \sqrt{1-t^2} dt = \frac{\pi}{4}$.
- On considère la suite (I_n) définie par : $I_0 = \int_0^1 \sqrt{1 t^2} dt \text{ et } I_n = \int_0^1 t^n \sqrt{1 t^2} dt \text{ pour tout entier naturel } n \text{ non nul }.$
 - $\langle a \rangle$ Calculer I_1
 - **b** Montrer que pour tout entier naturel $n ; 0 \leq I_{n+1} \leq I_n$.
 - $\overline{\mathbf{c}}$ En déduire que la suite (I_n) est convergente.
- On donne la fonction f définie sur [-1,1] par : $f(x)=(1-x)\sqrt{1-x^2}$, et , on désigne par (C_f) et on désigne par (C_f) sa courbe dans un repère orthonormé $(O,\overrightarrow{i},\overrightarrow{j})$ Calculer l'aire de la partie du plan limitée par la courbe (C_f) , l'axe des abscisses et les deux droites d'équations x=0 et x=1

Exercice N° 3(6 points)

L'urne A contient une boule rouge et trois boules vertes .

L'urne B contient deux boules rouge et trois boules noirs .

Toutes les boules sont indiscernables à toucher.

On dispose d'un dé cubique bien équilibré , à six faces numérotées de 1 à 6 .

On lance ce dé une fois :

- \bullet S'il tombe sur une face portant un numéro multiple de 3 , on tire une boule de l'urne A .
- \bullet Sinon une tire une boule de l'urne B .
- 1 Calculer la probabilité de chacun des événements :
 - $\langle a \rangle N : \ll Obtenir une boule noire \gg .$
 - $R: \ll Obtenir une boule rouge \gg$
 - \bigcirc V : \ll Obtenir une boule verte \gg
- 2 Quelle est la probabilité que la boule tirée provient de l'urne B sachant qu'elle rouge ?

