Lycée chedhly khaznadar teboursouk BEJA

Section: Mathématiques

BAC BLANC 2016

Mathématiques

Durée: 240 mn coefficient: 4

Le sujet comporte 4 pages numérotées de 1 à 4

Une grande importance sera attachée à la clarté de la rédaction et au soin de la présentation

Proposé par :

Mr Rakrouki Mourad

EXERCICE 1 (4 pts):

L'espace est rapporté à un repère orthonormé $(O,\vec{i},\vec{j},\vec{k})$, on considère les points A(2, 0, - 1) , B(0, 1, 2) et C(- 2, 0, 1).

- 1)a) Montrer que le triangle ABC est rectangle et calculer son aire.
 - b) Déterminer une équation de la sphère S de diamètre [AC].
 - c) Donner une équation cartésienne du plan P perpendiculaire à (OB) en B.
 - d) Montrer que S et P sont tangents en B.
- 2) Soit f l'application de l'espace dans lui-même qui à tout point M(x, y, z) associe le point

M' (x', y', z') tels que
$$\begin{cases} x' = -2x \\ y' = -2y - 1 \\ z' = -2z + 3 \end{cases}$$

- a) Montrer que f est une homothétie dont on précisera le centre Ω et le rapport k.
- b) On pose f(P) = P'et f(S) = S'. Donner une équation cartésienne du plan P'.
- c) Montrer que P ' est tangents aux deux sphères S et S '.
- 3) Soit Q le plan dont une équation cartésienne est : $2 \times +3 \times -2 + 2 = 0$.
 - a) Vérifier que Ω appartient à Q.
 - b) Montrer que Q coupe S suivant un cercle ζ dont on précisera le centre J et le rayon r.
 - c) Préciser alors l'intersection de Q et S '.

EXERCICE 2 (3 pts):

- 1) Résoudre dans IR l'équation différentielle (E_0): 2 y ' + y = 0.
- 2) Soit l'équation différentielle (E₁): 2 y '+ y = $2e^{-\frac{x}{2}}$.
 - a) Montrer que la fonction g définie sur IR par $g(x) = xe^{-\frac{x}{2}}$ est solution de (E₁).
 - b) Montrer qu'une fonction f solution de (E_1) si est seulement si f g solution de (E_0) .
 - c) Déterminer alors la solution f de (E_1) telle que f(0) = 4.
- 3) a) Sans utiliser une intégration par parties, calculer pour $x \in IR$, $\int_0^x (x+4)e^{-\frac{x}{2}}dx$.
 - b) En déduire la valeur moyenne de f sur [0;2].
- 4) Soit l'équation différentielle (E₂): 2 y "+ y '= $2e^{-\frac{x}{2}}$.
 - a) En posant z = y ', écrire l'équation qui doit vérifier z.
 - b) Déterminer alors la solution h de (E_2) telle que h(0) = -1 et h '(0) = 4.

EXERCICE 3 (4 pts):

Un centre de santé se propose de dépister une maladie auprès d'une population de 1000 individus. On dispose des données suivantes :

- * La proportion des personnes malades est de 20%.
- * Sur 100 personnes malades, 95 ont un test positif.

- * Sur 100 personnes non malades, deux personnes ont un test positif.
- 1) On choisit une personne au hasard et on la soumet à un test de dépistage.

On note M: « la personne est malade » et T: « la personne a un test positif »

- a) Donner l'arbre de probabilité qui modélise cette situation.
- b) Déterminer la probabilité qu'une personne choisie est malade et a un test négatif.
- c) Déterminer la probabilité que le test est positif.
- d) Sachant que le test est positif, déterminer la probabilité qu'une personne soit malade.
- 2) On choisit au hasard 10 personnes. Déterminer la probabilité que 8 personnes ont un test négatif.
- 3) On suppose qu'un virus responsable à cette maladie a une durée de vie X exprimée <u>en</u> <u>heures</u> qui suit une loi exponentielle de paramètre λ .

La durée moyenne de vie d'un virus est donnée par : $\lim_{t\to +\infty} \int_0^t \lambda x e^{-\lambda x} dx$.

- a) A l'aide d'une intégration par parties, montrer que $\lim_{t\to +\infty} \int_0^t \lambda x e^{-\lambda x} dx = \frac{1}{\lambda}$.
- b) Dans la suite, la durée moyenne de vie d'un virus étant de 200 heures.
 Déterminer la probabilité que le virus persiste dans l'organisme du personne plus que 3 jours.
- c) Sachant que le virus a persisté plus que 3 jours, quelle est la probabilité qu'il persiste moins qu'une semaine.
- d) Déterminer, en jours et à une heure près, le temps t tel que $p(X \le t) = p(X \ge t)$.
- e) Définir puis représenter la fonction de répartition de X.

EXERCICE 4 (3 pts):

Tous les résultats de cet exercice seront arrondis à 10⁻² près. Une maison d'édition a ouvert le 1^{er} janvier 2012, sur internet, un site de vente par correspondance. Le tableau suivant donne l'évolution du nombre de livres vendus par mois.

Mois	Janvier 2012	Janvier 2013	Juillet 2013	Janvier 2014	Juillet 2014	Janvier 2015
Rang du mois X _i	1	13	19	25	31	37
Nombres de livres Yi	840	2200	2960	3148	n	5300

1) Calculer le nombre de livres vendus en juillet 2014 sachant que la moyenne des ventes pendant la période allant de janvier 2012 à janvier 2015 égal à 3078.

Dans la suite, on prend n = 4020.

- 2) Représenter, dans un repère orthogonal, le nuage de points de la série statistique (X,Y).
- 3) On pose $z_i = \ln\left(\frac{y_i}{10}\right)$.
 - a) Calculer le coefficient de corrélation entre X et Z. Un ajustement affine est-il justifié?
- b) Donner une équation de la droite d'ajustement affine D de z en x obtenues par la méthode des moindres carrés.
 - c) En déduire l'expression de y en x sous la forme $y = \alpha e^{\beta x}$.

- 4) En supposant que l'évolution se poursuive de cette façon.
 - a) Donner une estimation du nombre de livres qui seront vendus en juillet 2016.
- b) A partir de quelle année peut-on prévoir que le nombre de livres vendus dépasse 20000 ? **EXERCICE 5 (6 pts) :**

Soit f la fonction définie sur $]0\,;+\infty[$ par $f(x)=\frac{1}{\sqrt{e^{4x}-1}}$ et soit ζ_f sa courbe représentative dans un repère orthonormé (O,\vec{i},\vec{j}) .

- 1)a) Dresser le tableau de variations de f.
 - b) Montrer que f est une bijection de $]0; +\infty[$ sur un intervalle J que l'on précisera.
 - c) Tracer les courbes ζ_f et $\zeta_{f^{-1}}$ dans le repère (O,\vec{i},\vec{j}) .(En utilisant deux couleurs différentes)
 - d) Montrer que pour tout $x \in J$ on a : $f^{-1}(x) = \frac{1}{4} \ln \left(\frac{1+x^2}{x^2} \right)$.
- 2)a) Montrer que l'équation f(x) = x admet dans $\,\,]0\,;+\infty[\,$ une unique solution $\,\alpha$.
- b) On pose $I=\int_{\alpha}^{1}f^{-1}(x)dx$. En utilisant une intégration par parties, montrer que $\int_{\alpha}^{1}\frac{dx}{1+x^{2}}=2\left(I+\alpha^{2}\right)-\ln\left(\sqrt{2}\right).$
- 3) Soit h la fonction définie sur $\left[0; \frac{\pi}{2}\right]$ par $h(x) = \frac{1}{4} \ln\left(1 + \tan^2(x)\right)$.
- a) Etudier les variations de h sur $0; \frac{\pi}{2}$.
- b) Montrer que h^{-1} est dérivable sur $]0 ; +\infty[$ et que pour tout $x\in]0 ; +\infty[; (h^{-1})'(x)=2 f(x).$
- c) Soit $\mathcal A$ l'aire de la partie du plan limitée par ζ_f , l'axe des abscisses et les droites d'équations $\mathbf x = \ln\left(\sqrt{2}\right)$ et $\mathbf x = \ln\left(\sqrt{2}\right)$. Montrer que $\mathcal A = \frac{\pi}{24}\left(u.a\right)$.
- 4) Pour tout n \in IN* , on pose $U_n = \int_1^{\ln\left(\sqrt{2}\,\right)} \frac{dx}{\sqrt{e^{4nx}-1}}$.
 - a) Montrer que la suite $\left(U_{_{n}}\right)$ est croissante puis déduire qu'elle est convergente.
 - b) Montrer que pour tout $\mathbf{n} \in IN^*$, $U_n \ge \frac{-1}{\sqrt{4^n-1}}$, en déduire $\lim_{n \to +\infty} U_n$.

BON TRAVAIL