AS: 206/2017 LYCEE MONGI SLIM SILIANA DEVOIR DE SYNTHESE N°1 SVT

PROF: SESSI MOHAMED

NIVEAU: 4^{EME} MATHS DATE: 04/01/2017 DUREE: 90 MINUTES

PREMIERE PARTIE: (8 points)

A. QCM: pour chacun des items suivants, il peut y avoir une ou deux réponse(s) correcte(s).

Indiquez pour chaque item la (ou les) lettre(s) correspondant à la (ou aux) réponse(s) correcte(s).

1) Le potentiel de repos:

- a) Est du à une égalité des concentrations des ions Na⁺ et K⁺ de part et d'autre de la membrane.
- b) S'explique par le flux des ions Na⁺ et K⁺ à travers des canaux voltages dépendants.
- c) S'explique par le flux des ions Na⁺ et K⁺ à travers des canaux chimiodépendants.
- d) Est du à une inégalité des concentrations des ions Na⁺ et K⁺ de part et d'autre de la membrane.

2) Dans les conditions physiologiques, le potentiel d'action enregistré au niveau d'une fibre nerveuse est caractérisé par :

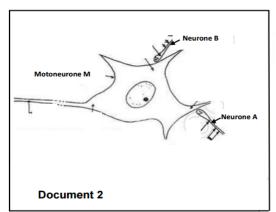
- a) Une amplitude constante
- b) Une amplitude proportionnelle à l'intensité de la stimulation
- c) Une propagation unidirectionnelle
- d) Une propagation continue le long d'une fibre myélinisée.

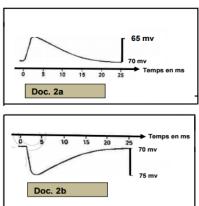
3) Le neurotransmetteur:

- a) Est libéré en permanence au niveau de la synapse
- b) Se fixe à des récepteurs situés sur la membrane postsynaptique
- c) Reste dans la fente synaptique après la stimulation
- d) Est libéré dans la fente synaptique suite à l'arrivée d'un PA dans la terminaison axonique du neurone présynaptique.

4) A propos de la transmission d'un message nerveux :

- a) Le message afférent passe directement au neurone postsynaptique.
- b) Le message afférent provoque la libération d'une quantité de neurotransmetteur dans la fente synaptique
- c) Chaque potentiel d'action présynaptique est à l'origine d'un potentiel d'action postsynaptique
- d) La fréquence des PA présynaptiques est convertie en concentration de neurotransmetteur.




- B. Le document suivant représente schématiquement une synapse neuroneuronique.
- Annotez ce document (de a à h) par les noms correspondants.

DEUXIEME PARTIE: (12 points)

Exercice 1: (6 points)

Le document 2 est un schéma de montage expérimental réalisé au niveau du motoneurone M de la corne antérieure de la moelle épinière.

- On stimule le neurone A (S_A) et on obtient en O₅ l'enregistrement 2a.
- On stimule le neurone B (S_B) et on obtient en O_5 l'enregistrement **2b**.
- 1) Analysez les enregistrements 2a et 2b. (1pt)
- 2) Déduisez la nature des synapses (A-M) et (B-M) en justifiant la réponse. (1pt)
- 3) Précisez l'origine ionique de chaque synapse. (2pts)
- 4) Expliquez comment fonctionne une synapse comme celle qui existe entre les neurones B et M. (2pts)

Exercice 2: (6 points)

On se propose d'étudier quelques propriétés de la fibre nerveuse par la réalisation d'expériences.

Expérience 1:

Un axone de calmar est placé dans le dispositif expérimental représenté par le document 1.

S₁ S₂: électrodes excitatrices

R₁: électrode réceptrice

R₂: électrode de référence.

Au temps $\mathbf{t_0}$, on place R_1 à la surface de l'axone. Au temps T_1 on introduit R_1 à l'intérieur de l'axone. Aux temps $\mathbf{t_2}$; $\mathbf{t_3}$; $\mathbf{t_4}$ et $\mathbf{t_5}$, on applique sur l'axone quatre stimulations isolées et d'intensité croissante (R_1 étant toujours introduite à l'intérieur de l'axone). Les enregistrements apparaissent sur l'oscilloscope sont présentés sur le document 2.

- 1) Analysez l'enregistrement obtenu en (a) (depuis t_0 jusqu'à t_1). (1pt)
- 2) Expliquez le mécanisme du maintien de la polarité de la fibre nerveuse au repos. (1p)
- 3) Comparez les enregistrements (b), (c) et (d) du document 2. Quelle propriété de la fibre nerveuse est ainsi mise en évidence ? (1pt)

4) En se référant à l'enregistrement (b) du document 2, reproduisez le tableau suivant et complétez-le. (1.5pts)

Phases	AC	BD	DE
Désignation			
Phénomènes électriques			

Expérience 2:

A l'aide du montage schématisé dans le document 3, on applique une excitation efficace sur l'axone et on enregistre les phénomènes électriques grâce à 3 électrodes réceptrices R_A , R_B et R_C placées aux points A, B et C situés à des distances différentes des électrodes excitatrices S1 et S2 comme indiqué sur le document 3.

On donne les distances : $S_2A = 18mm$; $S_2B = 36mm$; $S_2C = 54mm$ Les enregistrements obtenus sont représentés sur le document 4.

• Calculez la vitesse de propagation (V_{AB} et V_{BC}) de l'influx nerveux le long de la fibre (indiquez la méthode suivie). Que peut-on conclure ? (1.5pts)

BON TRAVAIL

