Exercice 1

- **A)** On considère dans \Box l'équation : (E) $2Z^2 (\sqrt{3}+1)(1+i)Z + 2i = 0$.
 - **1)** Vérifier que : $[(\sqrt{3}+1)(1+i)]^2 16i = [(\sqrt{3}-1)(1-i)]^2$.
 - 2) Résoudre dans 🛘 l'équation (E) .
- **B)** Le plan complexe est rapporté à un repère orthonormé direct $(0, \vec{u}, \vec{v})$ On considère les points A et B d'affixes respectives : $\mathbf{a} = \frac{1}{2} + i \frac{\sqrt{3}}{2}$ et $\mathbf{b} = \frac{\sqrt{3}}{2} + \frac{1}{2}i$
 - **1)** a) Donner l'écriture exponentielle de chacun des nombres complexe a et b .
 - **b)** Vérifier que : $b^2 = a$.
 - c) Déduire les racines carrées du nombre complexes a .
 - 2) Soit C le point d'affixe c = a + b
 - a) Placer les points A, B et C
 - **b**) Vérifier que : $\mathbf{c} = \frac{\sqrt{2} + \sqrt{6}}{2} e^{i\frac{\pi}{4}}$.
 - 3) On considère dans \Box l'équation : (E') $Z^2 + Z c = 0$
 - a) Vérifier que b est une solution de (E').
 - **b**) On désigne par **d** l'autre solution de (**E'**). Prouver que : $\mathbf{d} = \frac{\sqrt{2} + \sqrt{6}}{2} e^{-i\frac{11\pi}{12}}$.
 - c) Placer le point D d'affixe d .

Exercice 2

Soit dans Cl'équation (E): $z^2 - (1+3i)z - 2 + i = 0$

- 1) Résoudre dans Cl'équation (E)
- 2) On pose $f(z) = z^3 (2+3i)z^2 + (4i-1)z + 2-i$
- a) Montrer que l'équation f(z)=0 admet dans Cune solution réelle que l'on déterminera
- b) Déterminer les complexes b et c tels que $f(z) = (z-1)(z^2 + bz + c)$ quelque soit $z \in C$
- c) Résoudre alors l'équation f(z) = 0
- 3) Soit dans le plans muni d'un repère orthonormé direct $(0; \vec{u}; \vec{v})$.

les points A; B et C d'affixes respectives 1+2i; i et 1.

- a) placer les points A, B et C puis déterminer la nature du triangle ABC.
- b) Déterminer l'aire du trapèze OBAC.

Exercice 3

- 1) La forme exponentielle de Z = (-2-2i) est $\begin{cases} 2\sqrt{2}e^{-i\frac{3\pi}{4}} \\ 2\sqrt{2}e^{-i\frac{\pi}{4}} \\ 2\sqrt{2}e^{i\frac{3\pi}{4}} \end{cases}$
- 2) Une solution de l'équation $2z + \overline{z} + 3 i = 0$ est $\begin{cases} 1 + i \\ -1 + i \\ 1 i \end{cases}$

3) Soit
$$Z = 1 + i\sqrt{3}$$
 alors $Z^3 = \begin{cases} 8 \\ 8i \\ -8 \end{cases}$

- 4) Soit A, B, C trois points muni d'un repère (O, \vec{u}, \vec{v}) d'affixes respectives Z_A, Z_B, Z_C .
- a) si $Z_C = Z_A + Z_B$ alors $\begin{cases} A, B, C \text{ sont align\'es} \\ A \text{ est le milieu de [BC]} \\ OACB \text{ est un parall\`elogramme} \end{cases}$
- b) Si $(Z_C Z_A) = (3i) (Z_B Z_A)$

A, B, C sont alignés
A, B, C sont situés sur le cercle de diametre [BC]
le triangle ABC est rectangle en A

Exercice 4

Soit l'équation $(E): z^2 + (1-3i)z - 2i - 2 = 0$

On désigne par z_1 et z_2 les deux solutions de (E)

- 1) a- Sans calculer z_1 et z_2 vérifier que $|z_1 \times z_2| = 2\sqrt{2}$ et $\arg(z_1 \times z_2) = -\frac{3\pi}{4} + 2k\pi$
 - b-Vérifier que $z_1 = 2i$ est une solution de (E)
 - c- En déduire l'écriture exponentielle puis l'écriture cartésienne de z_2
- 2) Soit (E'): $z^3 (1+3i)z^2 (4-4i)z + 2(2i+2) = 0$
 - a- Vérifier que 2 est une solution de (E')
 - b- Résoudre alors dans Cl'équation (E')
- 3) Soit (E_1) : $z^2 + 2e^{i\theta}z + e^{2i\theta} 1 = 0$:

Résoudre dans \mathbb{C} l'équation (E_1)

- 4) Soit A, B et C les points d'affixes respectifs : $2e^{i\theta}$, $1+e^{i\theta}$ et $-1+e^{i\theta}$
 - a- Ecrire z_B et z_C sous forme exponentielle
 - b- Montrer que OBAC est un rectangle
- d- Soit I le centre du rectangle $O\!BAC$. Déterminer l'affixe du point D tel que $O\!I\!BD$ est un losange
 - e-Déterminer le réel $\theta \in 0, \pi$ tel que l'aire du losange *OIBD* égale a $\frac{1}{2}$

Exercice 5

- **A/** 1) Résoudre dans \mathbb{C} l'équation (E) : $z^2 4\sqrt{2}$. z + 16 = 0. Ecrire les solutions de (E) sous la forme exponentielle.
 - 2) En déduire les solutions dans \mathbb{C} de l'équation : $z^4 4\sqrt{2}$. $z^2 + 16 = 0$ sous la forme exponentielle.
- Le plan complexe étant muni d'un repère orthonormé direct $(0, \vec{u}, \vec{v})$.
 - 3) On donne les points $A(2e^{i\frac{\pi}{8}})$, $B(-2e^{i\frac{\pi}{8}})$, $C(2e^{-i\frac{\pi}{8}})$ et $D(-2e^{-i\frac{\pi}{8}})$. Montrer que le quadrilatère ACBD est un rectangle et que son aire $\mathcal{A}=4\sqrt{2}$
- **B/** On considère l'équation (E_{θ}) : $i.z^2 + (2\sin\theta).z i = 0$; où $\theta \in \left]0, \frac{\pi}{2}\right[$
 - 1) Montrer que $z_1 = e^{i\theta}$ est une solution de (E_{θ}) . En déduire l'autre solution z_2 de (E_{θ}) .
 - 2) On donne les points $\rm M_1$ et $\rm M_2$ d'affixes respectifs $\rm \,e^{i\theta}$ et $(-\rm \,e^{-i\theta})$
 - a) Montrer que $(\overrightarrow{OM_1}, \overrightarrow{OM_2}) \equiv \pi 2\theta[2\pi]$
 - b) Déterminer la valeur de θ dans $\left]0,\frac{\pi}{2}\right[$ pour laquelle le triangle OM_1M_2 soit équilatéral.

Formulaire: $\cos 2\theta = 1 - 2\sin^2 \theta$ et $\sin 2\theta = 2\sin \theta . \cos \theta$

Exercice 6

- 1) Résoudre dans \mathbb{C} l'équation : $z^2 (1+i)z + i = 0$.
- 2) On considère dans l'ensemble C l'équation :

$$(E_{\theta})$$
: $z^2 - (1+i)e^{i\theta}z + ie^{2i\theta} = 0$ (ou θ est un réel).

- a) Vérifier que $z_1 = e^{i\theta}$ est une solution de (E_{θ})
- b) En déduire l'autre solution z_2 de (E_θ)
- 3) Dans le plan complexe muni d'un repère orthonormé direct $(0, \vec{U})$ considère les points M et M' d'affixes respectives z_1 et z_2 .
 - a) Vérifier que $\frac{z_2}{z_1}$ est imaginaire pur.
 - b) Montrer que $\forall \theta \in \mathbb{R}$ le triangle OMM' est isocèle et rectangle en 0.

Exercice 7

1) Verifier que :
$$\left[i\left(1-e^{i\alpha}\right)\right]^2=-1+2e^{i\alpha}-e^{2i\alpha}$$
 , $\alpha\in R$.

- 2) a)Resoudre dans C l'equation : $z^2-2i\left(1+e^{i\,\alpha}\right)z-4\,e^{i\alpha}=0$.
 - b)En deduire les solutions de l'equation :

$$z^4 - 2i(1 + e^{i\alpha})z^2 - 4e^{i\alpha} = 0$$
.

3)On designe par A , B et C les points du plan complexe d'affixes respectives

2i ,
$$\sqrt{3}$$
 – i et $2ie^{i\alpha}$, $\alpha \in [0, \pi]$.

a)Montrer que :
$$1 - e^{i\alpha} = -2i\sin\frac{\alpha}{2} e^{i\frac{\alpha}{2}}$$

b)En deduire que :
$$z_A - z_C = 4 \sin \frac{\alpha}{2} e^{i\frac{\alpha}{2}}$$

c)Determiner $lpha\,$ pour que le triangle ABC soit isocèle de sommet principal A .

Exercice 8

- 1) Résoudre dans \mathbb{C} l'équation : $2 z^2 (1+3i) z 2 = 0$
- 2) Dans le plan complexe muni d'un repère orthonormé direct (O, \vec{u}, \vec{v}) on considère les points

A et B d'affixes respectives $z_A = 1 + i$ et $z_B = -\frac{1}{2} + \frac{1}{2}i$. On désigne par $\mathscr C$ le cercle trigonométrique.

a) Ecrire z_A et z_B sous forme exponentielle

Dans la suite de l'exercice, M désigne un point de $\mathscr C$ d'affixe $e^{i\theta}$ où $0\in[0,2\pi]$

- b) Montrer que $e^{2i0} 1 = 2i \sin\theta e^{i0}$
- c) Montrer que $MA \times MB = \left| e^{2i\theta} 1 \left(\frac{1}{2} + \frac{3}{2}i \right) e^{i\theta} \right|$. En déduire que $MA \times MB = \sqrt{\frac{1}{4} + \left(-\frac{3}{2} + 2\sin\theta \right)^2}$
- d) En déduire qu'il existe un point M de C, dont on donnera l'affixe, pour lequel $MA \times MB$ est maximal. Et deux points M_1 et M_2 de C, dont on donnera les coordonnées, pour lequel $MA \times MB$ est minimal.

Exercice 9

Pour tout réel θ de $\frac{\pi}{2}$, π

 (E_{α}) : $z^2 - 2(i + \cos\theta)z + 2i\cos\theta = 0$.

- 1) Résoudre dans \mathbb{C} l'équation (E_{α}) .
- 2) On désigne par désigne par A, M' et M" les points d'affixes respectives i, $z' = i + e^{i\theta}$ et $z'' = i + e^{-i\theta}$.
 - a- Montrer que les points $\,M'$ et $\,M''$ varient sur un même cercle que l'on précisera lorsque $\,\theta$ décrit $\left|\frac{\pi}{2},\pi\right|$.
 - b- On note I le milieu du segment [M'M"].

Déterminer l'ensemble des points I lorsque θ décrit $\frac{\pi}{2}$, π .

- 3) a- Montrer que pour tout réel x on a : $i + e^{ix} = 2\cos(\frac{x}{2} \frac{\pi}{4})e^{i(\frac{x}{2} + \frac{\pi}{4})}$.
 - b- Mettre alors z' et z" sous forme exponentielle.
- 4) a- Montrer que AM'M" est un triangle isocèle en A.
 - b- Déterminer θ pour que le triangle AM'M" soit équilatéral.

Exercice 10

Soit $\theta \in]0, \pi[et(E_{\theta}): z^2-2z-2i\sin\theta e^{i\theta}=0$

- 1. a) Montrer que : $1+2i\sin\theta e^{i\theta}=(e^{i\theta})^2$
 - b) Résoudre dans \mathbb{C} , (E_{θ})
- 2. On donne $f(z) = z^3 4z^2 + 2(2 i\sin\theta e^{i\theta})z + 4i\sin\theta e^{i\theta}$
 - a) Calculer f(2)
 - b) Montrer que : $f(z) = (z-2)(z^2+bz+c)$ où b et c deux nombres complexes à déterminer
 - c) Résoudre dans C l'équation : f(z)=0
- 3. Le plan est rapporté à un repère orthonormé direct (0; \vec{u} , \vec{v})

On désigne par A , B et C les points d'affixes respectives : 2 , $1-e^{i\theta}$ et $1+e^{i\theta}$

- a) Déterminer la forme exponentielle de z_B et z_C
- b) Montrer que : OBAC est un rectangle
- c) Déterminer θ pour que OBAC soit un carré

