Lycée Kalaa sghira

Devoir de synthèse N°1 Sciences physiques 4M

Année scolaire 2016/2017

Prof: Amara Moncef

Le 31/12/2016

Durée: 3 heures

Le sujet compte cinq pages ou la 5^{éme} est la feuille annexe à remettre avec la copie Chimie (7 points)

Exercice N°1(4 points)

A température élevée, le chlorure d'hydrogène HCl se décompose en dihydrogène H₂ et dichlore Cl₂ ; cette réaction est modélisée par l'équation suivante :

 $2HCI(g) \longleftrightarrow H_2(g) + CI_2(g)$

Dans une enceinte de volume constant on introduit n_0 = 200 mmol de chlorure d'hydrogène gazeux.

- 1- La température du système chimique est $T_1 = 2000^{\circ}C$, à l'aide d'un dispositif approprié on suit l'évolution de la quantité de matière de dihydrogène en fonction du temps. Les résultats obtenus ont permis de tracer le graphe de la **figure-1**-.de la feuille annexe à remettre avec la copie
- a- Déterminer le taux d'avancement final de la réaction. (Un tableau d'avancement est conseillé)
- b- La réaction est-elle totale ou limitée ? Justifier la réponse.
- 2- On répète l'expérience précédente à une température $T_2 = 1000$ °C, le système chimique évolue vers un nouvel état d'équilibre où le taux d'avancement final de la réaction est $\tau_i' = 0,4$.
- a- La diminution de température favorise-t-elle la décomposition du chlorure d'hydrogène ? cette réaction est-elle endothermique ou exothermique ? Justifier la réponse.
- b-Tracer sur le même graphe de la **figure-1** l'allure de l'évolution de la quantité de matière de H₂ au cours du temps à la température **T**₂.
- 3- Le système chimique est en état d'équilibre à la température T_1 , on introduit dans l'enceinte **74** millimole de gaz ammoniac NH₃. On suppose que l'ammoniac réagit seulement avec le chlorure d'hydrogène selon l'équation NH₃ + HCl \rightarrow NH₄Cl (cette réaction est rapide et totale).
- a- Déterminer la nouvelle composition initiale du système chimique.
- b- Dans quel sens évolue le système ? Justifier la réponse.
- 4- Le système est à nouveau à l'état d'équilibre à la température T_1 , une diminution de pression at-elle un effet sur l'équilibre du système ? Justifier.

Exercice N°2 (3 points)

A 70°C, on prépare un système chimique en phase liquide de volume V, contenant à un instant $t_0 = 0$ min, une quantité de matière $n_1 = 20.10^{-3}$ mol d'éthanol C_2H_5 -OH et $n_2 = 15,8.10^{-3}$ mol d'acide propanoïque C_2H_5 -COOH.

- 1) Ecrire l'équation de la réaction d'estérification qui se produit.
- 2) Lorsque le système atteint l'équilibre chimique, la quantité de matière n_{al} de l'éthanol restant est le double de la quantité de matière n_{ac} de l'acide propanoïque restant.
- **a-** Déterminer la valeur du taux d'avancement final τ_f de la réaction. Que peut-on en déduire pour cette réaction ?
- **b-** Etablir, l'expression de la constante d'équilibre K de la réaction, en fonction de n_1 , n_2 et x_f . La calculer.

- **3-a)** A l'aide d'une solution d'hydroxyde de sodium NaOH de concentration $C_B = 1$ mol.L-1, on dose l'acide propanoïque présent dans le système à un instant t_1 . Le volume de la solution titrant, versée à l'équivalence est $V_B = 4,2$ ml. Montrer que le système est en équilibre à l'instant t_1 .
- **b)** Pour que le système évolue à partir de l'instant t₁ dans le sens de l'hydrolyse, préciser en le justifiant, si à cet instant l'on doit ajouter ou extraire de l'acide.

Physique (13 points)

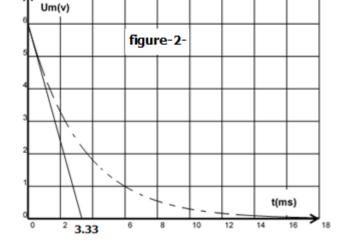
Exercice N°1(2 points) texte scientifique

Un oscillateur électrique est un système dont l'évolution est décrite par la variation périodique (ou pseudo périodique) d'une grandeur électrique.

Autrement dit, on peut associer à un oscillateur une grandeur physique (paramètre descriptif de l'oscillateur) qui est une fonction périodique du temps.

Par exemple, quand un cristal est déformé, le centre des charges électriques positives peut s'écarter du centre des charges électriques négatives. Il apparaît alors un dipôle électrique. C'est l'origine de la piézoélectricité. Cet effet est réversible. Sous l'action d'un champ électrique, le cristal peut se déformer. Quand le champ est supprimé, le cristal revient à sa forme première par élasticité. Sous l'action d'un champ électrique alternatif, il se met à osciller et si la fréquence est convenable, il entre en résonance. Cela entraîne l'apparition d'un oscillateur électrique associé. C'est sur cet effet que fonctionnent les oscillateurs à quartz des montres par exemple.

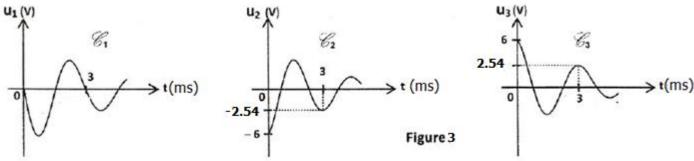
- 1) Donner d'après le texte la définition d'un oscillateur électrique
- 2-a) Comment peut-on créer des oscillations électriques pseudopériodiques
- b) Par quelle grandeur électrique peut-on caractériser cet oscillateur
- 3) Comment fonctionnent les oscillateurs à quartz des montres


Exercice N°2 (4 points)

On dispose d'un circuit électrique série constitué par :

- Un résistor de résistance R_0 = 50 Ω
- Une bobine (B) d'inductance L et de résistance interne r
- Un condensateur de capacité C = 2,1 μ F complétement chargé au préalable à l'aide d'un générateur supposé idéal de force électromotrice E = 6 V
- 1-a) En choisissant un sens arbitraire de courant, dessiner le montage électrique correspondant et flécher les tensions électriques des différents dipôles
- b) Etablir l'équation différentielle du circuit en fonction de u_C tension aux bornes du condensateur, ses dérivées première et seconde, $\lambda = \frac{R_0 + r}{2L}$ et

$$\omega_0 = \frac{1}{\sqrt{LC}}$$
 pulsation propre du circuit


2) La mesure des amplitudes des oscillations de la tension $u_c(t)$ ont permis de tracer la courbe de la figure-2- ci-contre d'équation $Um,c(t)=E.e^{(-.t/\tau)}$ avec 1

$$\tau = \frac{1}{\lambda}$$

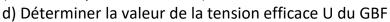
Déterminer graphiquement a) la valeur de la constante λ

- b) La durée du régime pseudopériodique qui s'installe dans le circuit
- 3) On réalise une expérience qui permet d'enregistrer séparément l'évolution temporelle des tensions suivantes : u_{R0} aux bornes du résistor, u_{B} aux bornes de la bobine et u_{C} aux bornes du condensateur. On obtient les courbes \mathcal{C}_{1} , \mathcal{C}_{2} et \mathcal{C}_{3} de la figure-3- ci-dessous

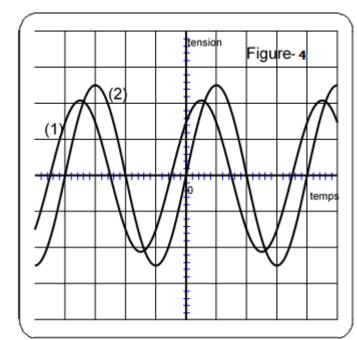
- a) Justifier que la courbe 🛭 représente la tension uc(t)
- b) Attribuer, en le justifiant, chacune des courbes 🐔 et 📆 à la tension u(t) qu'elle représente
- c) Sachant que la pulsation des oscillations est $\omega = \sqrt{\omega_0^2 \lambda^2}$, calculer l'inductance L de la bobine
- d) En déduire la valeur de la résistance interne r de la bobine
- 4) Pour un amortissement faible, montrer qu'à des intervalles de temps successifs égaux à une pseudopériode T à peu près égal à la période propre T_0 , la variation d'énergie électromagnétique totale ΔE forme une suite géométrique de raison ρ que l'on calculera

Exercice N°3 (7 points)

On dispose d'un circuit électrique série constitué par :

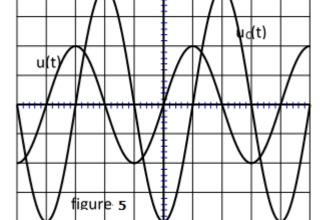

- Un résistor de résistance R_0 = 50 Ω
- Une bobine (B) d'inductance L= 0.1 H et de résistance interne r
- Un condensateur de capacité C
- Un GBF délivrant une tension alternative sinusoïdale de fréquence N réglable et de valeur efficace U constante

$$u(t) = U \sqrt{2}.\sin(2\pi.N_1 t + \frac{\pi}{4})$$
. Pour une


fréquence N = 377,4 Hz, on visualise sur la voie (1) d'un oscilloscope bicourbes les tensions

 $u_{R0} = U_1 \sqrt{2}.\sin(2\pi.N_1 t)$ aux bornes du résistor et u (t) aux bornes du générateur sur la voie(2), on obtient les oscillogrammes de la figure-4-

- 1-a) Justifier que la courbe (1) est celle du générateur
- b) Déterminer la valeur efficace I du courant
- c) Préciser, en le justifiant la nature du circuit (inductif, capacitif ou résistif)


- 2) Un voltmètre branché aux bornes de l'ensemble (bobine, condensateur) affiche une valeur U_2 = 3.05 V
- a) Sur la feuille annexe tracer le diagramme de Fresnel associé au circuit étudié à la fréquence N à l'échelle 2cm pour $\sqrt{2}$ volts. On désignera par :

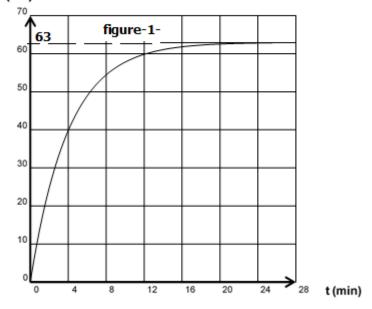
Sensibilité verticale voie(1) : 1.√2 v /div

Sensibilité verticale voie(2) : 2.√2 v /div

- $\checkmark \overrightarrow{OA}$ le vecteur associé à la tension u_{R0} (t)
- \checkmark \overrightarrow{AB} le vecteur associé à la tension u (B,C) (t), tension aux bornes de l'ensemble (bobine, condensateur)
- $\checkmark \overrightarrow{OB}$ le vecteur associé à la tension u (t)
- b) Déduire les valeurs de r et C
- 3) On prendra dans la suite de l'exercice $r=10~\Omega~et~C\approx 2\mu F.~On~règle~maintenant~la~fréquence~à~une~valeur~N_0~et~on~visualise~sur~l'écran~de~l'oscilloscope~les~tensions~u(t)~aux~bornes~du~générateur~sur~la~voie~(1)~et~u_C(t)~aux~bornes~du~condensateur~sur~la~voie~(2),~on~obtient~les~oscillogrammes~de~la~figure-5-$

- a) Déterminer le déphasage $\Delta \varphi = \varphi_u \varphi_{uc}$
- b) Montrer que le circuit est le siège d'une résonance d'intensité
- 4) A la résonance d'intensité la tension efficace U_c aux bornes du condensateur est U_c = Q.U ou Q est le facteur de surtension de circuit

a) Sachant que Q peut prendre les expressions suivantes : Q = $\frac{1}{RtC\omega 0}$; Q = $\frac{L\omega 0}{Rt}$ ou Q = $\frac{1}{Rt}$. $\sqrt{(\frac{L}{C})}$


Montrer que l'intensité efficace I du courant correspondant à une fréquence excitatrice N peut s'écrire sous la forme $\frac{I_0}{I} = \sqrt{1+Q^2(\frac{N}{N_0}-\frac{N_0}{N})^2}$ ou I_0 est la valeur efficace du courant à la résonance d'intensité

- b- Pour quelles fréquences N_1 et N_2 , la valeur efficace du courant est $I = \frac{I0}{\sqrt{2}}$
- -c- Montrer que $N_1.N_2 = N_0^2$

Feuille annexe

Nom	Prénom	Classe

n (H₂) en mmol

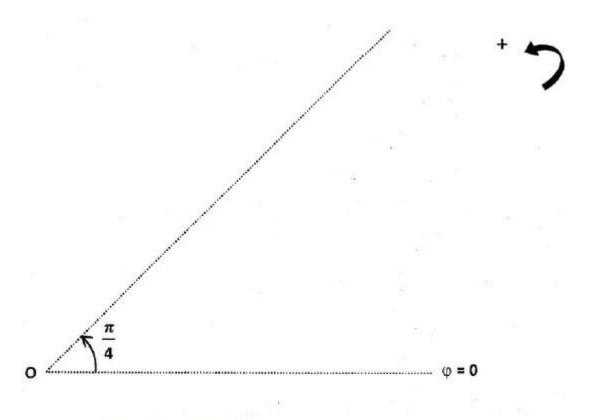


diagramme de Fresnel

Bac H Correction D3 Nº1	
2016/2017 Sc-phy	
Chimie	
Exnº 1	187
1°) a/ eHce(g) = He(g) + cl2(g)	
f=0 No	
t no-2n re x	00
to no-2x6 x6	
$\mathcal{E}_{6} = \frac{26}{2m}$ or $\frac{1}{2}$ $\frac{2}{100}$ $\frac{1}{100}$ $\frac{1}$	
Cf = 0 0 0 1 1 no - 2 x m = 0 = 1 x m = 10 = 100 mm of	
down 80- 063 Dat 631.	0,2
b) La reaction étudier est limitée can 26<1	
T 1220 C C T 1 C D = 0,4 \ 0,63	0,25
E'é < 29 La diminution de la température défaronse	0,5
La décomposition du gaz Hel Lout abaissement de la température deplace l'éq tout abaissement de la température du que E'é < EE	
las les deplece	
exolhernique	
Conclusion: La reaction etudie de accomposit	
exoltremique conclusion: la reaction etudie de de composition de Hel est enodo litermique b) T2 < T, La réaction sera plus lente =, té > 6=	0,40
b) 12 < 1, La reactivit roctor pro-	+.
Somin, E = Xb => Xb = Xn &b = 40 mmol gruphe Courbe n(Hz) - b(t) voir feville annère gruphe	
39/ ng (HCl)_ = no-2ng => ng (HCl)_ = 74 mm ol	
a) n(NH3) = ng(Ha) donc ne reste plus de Ha	o,tr
$n_o(Hcl) = 0 \text{ mmol}$ $n_o(Hcl) = n_o(cl_2) = 63 \text{ mmol}$	
b) La réaction evolue spontantment dan le x no	0,5
inverse pour produire le gaz HCl	(3)

49 Non, car le nombre de mol total gaz est constant Exn=2 0,26 1°) 2 460 + 94602 = 400 + C541002 n 2 \$ =0 n1 X € n, - x 66 N, - mg N2 - Ng 20/ nal (6) = 2 nacide (6) a) $E_{6} = \frac{\chi_{6}}{\chi_{m}}$ $| N_{1} - \chi_{6} = 2N_{2} - 2N_{6}$ $| N_{1} - \chi_{6} = 2N_{2} + N_{1}$ $| N_{1} - \chi_{6} = 2N_{2} + N_{1}$ $| \chi_{6} = 2N_{2} + N_{1}$ $| \chi_{6} = 2N_{2} - N_{1} = 3\frac{\chi_{6}}{\chi_{6}} = 2N_{1} + N_{1}$ 10, X Ef = 0,73 Soit 73,4%. Ze <1 R° limiter b) $K = [H20]e_1[ester]e_4 = , K = \frac{\chi_6^2}{(n_1 - \kappa_6)(n_2 - \kappa_6)}$ [acide] eq [alcol] eq A.N K = 3,8 ~ 4 3-a) n(NaOH)verse = CbVbE = 4,2 mmoe donc n(acd) rest = n(04-) = 4,2 mmol 0,7 ng (acd) - n2-x6 = 4,2 mmol ng (acide) = n (acide) restant donc le système est en equilibre b) Pour deplacer l'equilibre dans le seus l'avass (l'hydrolyse) on doit extraite de l'acide 016 con toute diminution de la concentration de l'avide deplace l'équilibre dans le sens qui fait augmenter [acide]

1 hysique EXNET 1º/ Un système oscillant est decrit par l'evolution periodique d'une grandeur électrique l-a) La decharge d'un condensateur à travers une bobine et un resistor 6) La variation de la tension Mc (+) pur exemple 3º) Sou l'action d'une deformation mécanique le centre de charges électrique .--- il entre en résonance Ex n= 2 16) Lai des mailles 1-0) UL + URO + 4c = 0 - e uro 13 L, r 1 ds c di $\frac{1}{ds} = c \frac{d^2 uc}{dt^2}$ URO = Roi = Roc duc De = rit L di = rc duc + Lc dinc Ma + Rolduc + reduc + Le druc = 0 On divise par LC d'uc + Rotr due + 1 le = 0

2 de 2 duc + wo2 Mc = 0

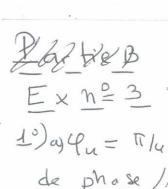
Wo2 = 1 ; Rotr = 21. donc

011

o, fo

0/1

001


1-4

0,4

5)

oit

20/ a) E = 3,33 ms =, 1= = 300 (5-1) b) Dt = 52 = 16 ms 0,4 3% a) à 6=0 ; Mc(0) = E-64 donc (3 -> Mc(4) b) a t = 0; i'(0) = 0 => URO(0) = 0 => (1) 015 a t=0 ; hes=0 => les+4(0)+4(0)=0=> le(0)=-4(0) ML(0)=-6V=, ML(11-, E2. c) $T = \frac{2T}{U} = 0$ $W = \frac{2T}{T} = 2093, 33 \text{ rads}^{-1}$ w = w 2 12 = , w = w = 12 27 $\frac{1}{Lc} = w^{\frac{1}{2}} \lambda^{2} \Rightarrow L = \frac{1}{c(w^{2} - \lambda^{2})}$ A. N L ~ 0, 10 (H) d) $\lambda = \frac{R_0 + r}{2 \lambda} = 2 \lambda L - R_0$ 94 r=10 s 40/ Suite géometrique => $\frac{U_{n+1}}{U_n} = cte$ $L(nT) = 0 => E_L(nT) = 0$ $U_n = cte$ $E((n+1)T) = E_C((n+1)T) = \frac{1}{2}CU_{nC} = \frac{1}{2}CE^2e^{-2\lambda(n+1)T}$ E (nT) = { C = 2 = 2 (nT) $\frac{E(nT)}{E(nT)} = \frac{-2\lambda(nT) + 2\lambda(h+1)T}{e}$ = e , NTaTo = 2TVLC E(n+1)T 015 $\frac{E(nT)}{E(n+1)T} = e^{4\pi\lambda VLC} = 5,62$

10) ay Pu = T/4 > Pue = 0 donc M(+) oscille en avance de phase / Me, (+) or la Courbe (1) oscille en avance de phase / (2) donc course (1) -> 11(t)

b) URD, = RII, = Jin = URD, m/RO Uro m = 2,5x2 V2 = 45 V2 V done II, = 25 /2 = 510 VZ A Alor I = II/ /12 = 5102A/

C) DY = Pu-Pi = Mu > 0 donc le circuit est inductif

d) Um = UVZ => U = Um avec Um = 2x211/2 U= 4,2(V)

2°/0) MR0+MBC = M(4) | Longueur de OP = 50m OF + AB = OB | 11 11 OB = 8,4 cm

b) 11AB1 = 12 ou 11AB1 = rIL donc r= 11AB1 $r = \frac{\sqrt{2}/2}{51 - 2\sqrt{5}} = 10 \text{ s}$

IDBI = (Lw - il) In donc

AN: C = 2,4 y F (61)

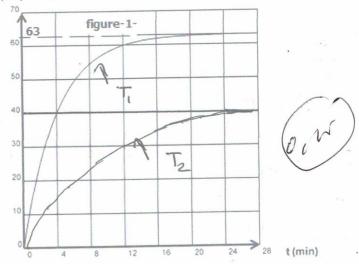
0,5

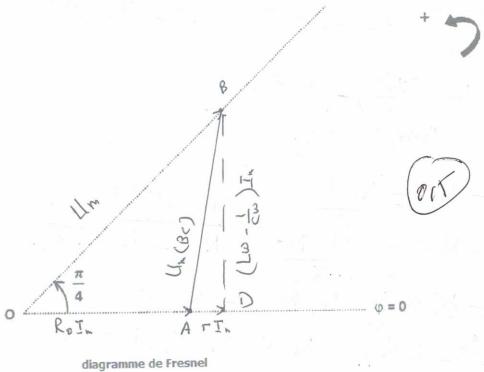
017

011

0,5

(1)


3-a) Pu-Pu= 2TT St ou St = T/4 donc . Pu - Pu = 11/2 b) Mc = = = / lidt => que = 9:-112 donc qu- (4: -T/2) = T/2 alor qu-q: = 0. C'est la resonance d'intensité 4% a) I = U VR2+ (Lw - 1)2 A La resonance d'untengité on U=RtIo; - RtWoR; L= QRt dou I - REIO VREZ+ (QREW_REWOR)2 REIO $\sqrt{R_t^2 + Q^2 R_t^2 \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)^2} \text{ avec}$ $W = 2\pi N_0$ $W_0 = 2\pi N_0$ (1) 1+ Q2 (No - No)2 alors Io - \ 1 + Q 2 (N - No)2


b)
$$I = I_0 / \sqrt{2} = 0$$
 $I_0 / \sqrt{2} = \sqrt{1 + Q^2 (\frac{N_0 - N_0^2}{N_0 - N_0^2})^2}$
 $\frac{1}{2} = 1 + Q^2 (\frac{N^2 - N_0^2}{N_0 N_0})^2 = 1$
 $\frac{1}{2} = 1 + Q^2 (\frac{N^2 - N_0^2}{N_0 N_0})^2 = 1$
 $\frac{1}{2} = 1 + Q^2 (\frac{N^2 - N_0^2}{N_0 N_0})^2 = 1$
 $\frac{1}{2} = 1 + Q^2 (\frac{N_0}{N_0 N_0})^2 = 1$
 $\frac{1}{2} = 1 + Q^2 (\frac{N_0}{N_0 N_0})^2 = 1$
 $\frac{1}{2} = 1 + Q^2 (\frac{N_0}{N_0 N_0})^2 = 1$
 $\frac{1}{2} = 1 + Q^2 (\frac{N_0}{N_0 N_0})^2 = 1$
 $\frac{1}{2} = 1 + Q^2 (\frac{N_0}{N_0 N_0})^2 = 1$
 $\frac{1}{2} = 1 + Q^2 (\frac{N_0}{N_0 N_0})^2 = 1$
 $\frac{1}{2} = 1 + Q^2 (\frac{N_0}{N_0 N_0})^2 = 1$
 $\frac{1}{2} = 1 + Q^2 (\frac{N_0}{N_0 N_0})^2 = 1$
 $\frac{1}{2} = 1 + Q^2 (\frac{N_0}{N_0 N_0})^2 = 1$
 $\frac{1}{2} = 1 + Q^2 (\frac{N_0}{N_0 N_0})^2 = 1$
 $\frac{1}{2} = 1 + Q^2 (\frac{N_0}{N_0 N_0})^2 = 1$
 $\frac{1}{2} = 1 + Q^2 (\frac{N_0}{N_0 N_0})^2 = 1$
 $\frac{1}{2} = 1 + Q^2 (\frac{N_0}{N_0 N_0})^2 = 1$
 $\frac{1}{2} = 1 + Q^2 (\frac{N_0}{N_0 N_0})^2 = 1$
 $\frac{1}{2} = 1 + Q^2 (\frac{N_0}{N_0 N_0})^2 = 1$
 $\frac{1}{2} = 1 + Q^2 (\frac{N_0}{N_0 N_0})^2 = 1$
 $\frac{1}{2} = 1 + Q^2 (\frac{N_0}{N_0 N_0})^2 = 1$
 $\frac{1}{2} = 1 + Q^2 (\frac{N_0}{N_0 N_0})^2 = 1$
 $\frac{1}{2} = 1 + Q^2 (\frac{N_0}{N_0 N_0})^2 = 1$
 $\frac{1}{2} = 1 + Q^2 (\frac{N_0}{N_0 N_0})^2 = 1$
 $\frac{1}{2} = 1 + Q^2 (\frac{N_0}{N_0 N_0})^2 = 1$
 $\frac{1}{2} = 1 + Q^2 (\frac{N_0}{N_0 N_0})^2 = 1$
 $\frac{1}{2} = 1 + Q^2 (\frac{N_0}{N_0 N_0})^2 = 1$
 $\frac{1}{2} = 1 + Q^2 (\frac{N_0}{N_0 N_0})^2 = 1$
 $\frac{1}{2} = 1 + Q^2 (\frac{N_0}{N_0 N_0})^2 = 1$
 $\frac{1}{2} = 1 + Q^2 (\frac{N_0}{N_0 N_0})^2 = 1$
 $\frac{1}{2} = 1 + Q^2 (\frac{N_0}{N_0 N_0})^2 = 1$
 $\frac{1}{2} = 1 + Q^2 (\frac{N_0}{N_0 N_0})^2 = 1$
 $\frac{1}{2} = 1 + Q^2 (\frac{N_0}{N_0 N_0})^2 = 1$
 $\frac{1}{2} = 1 + Q^2 (\frac{N_0}{N_0 N_0})^2 = 1$
 $\frac{1}{2} = 1 + Q^2 (\frac{N_0}{N_0 N_0})^2 = 1$
 $\frac{1}{2} = 1 + Q^2 (\frac{N_0}{N_0 N_0})^2 = 1$
 $\frac{1}{2} = 1 + Q^2 (\frac{N_0}{N_0 N_0})^2 = 1$
 $\frac{1}{2} = 1 + Q^2 (\frac{N_0}{N_0 N_0})^2 = 1$
 $\frac{1}{2} = 1 + Q^2 (\frac{N_0}{N_0 N_0})^2 = 1$
 $\frac{1}{2} = 1 + Q^2 (\frac{N_0}{N_0 N_0})^2 = 1$
 $\frac{1}{2} = 1 + Q^2 (\frac{N_0}{N_0 N_0})^2 = 1$
 $\frac{1}{2} = 1 + Q^2 (\frac{N_0}{N_0 N_0})^2 = 1$
 $\frac{1}{2} = 1 + Q^2 (\frac{N_0}{N_0 N_0})^2 = 1$
 $\frac{1}{2} = 1 + Q^2 (\frac{N_0}{N_0 N_0})^2 = 1$
 $\frac{1$

Feuille annexe

Nom	Prénom	Classe
The state of the s		

Page 5 sur 5