LS El Alia Prof: Tlich Ahmed

DEVOIR DE CONTROLE N°1

(Bac science)

AS: 2016/2017

Durée: 2h

Exercice $n^{\circ}1$: (7 points)

On considère dans C 1'équation (E) : $z^2 - 2(1+i)e^{i\frac{\pi}{3}}z + 4e^{i\frac{7\pi}{6}} = 0$

- 1) a) Vérifier que $z_0 = 2e^{i\frac{\pi}{3}}$ est une solution de (E).
 - b) Déduire l'autre solution de (E).
- 2) Le plan complexe est muni d'un repère orthonormé direct (O, \vec{u}, \vec{v}) . On considère les points

A, B et C d'affixes respectifs :
$$Z_A=2e^{i\frac{\pi}{3}}$$
 , $Z_B=2\sqrt{2}e^{i\frac{\pi}{12}}$ et $Z_C=2e^{i\frac{5\pi}{6}}$

- a) Construire les points A et C.
- b) Vérifier que $\frac{Z_C}{Z_A} = i$ puis déduire la nature du triangle OAC.
- c) Ecrire (1-i) sous forme exponentielle puis déduire que : $(1-i)Z_A = Z_B$
- d) Montrer que OBAC est un parallélogramme puis construire le point B.
- 3) a) Ecrire Z_B sous forme algébrique.
 - b) Déduire les valeurs de $Cos \frac{\pi}{12}$ et $Sin \frac{\pi}{12}$
- 4) Construire le cercle (C) de centre O et de rayon $2\sqrt{2}$. La perpendiculaire à (OB) passant par O coupe le cercle (C) en un point D d'affixe Z_D dont sa partie imaginaire est positive.
 - a) Justifier que $Z_D = i Z_B$.
 - b) Montrer que OAD C est un carré.

Exercice $n^{\circ}2$: (7 points)

Soit la fonction définie sur]0,+ ∞ [par $f(x) = \begin{cases} \frac{2x}{\sqrt{x^2 + 1}} - 1 & \text{si } x \ge 0 \\ \frac{xCosx}{x^2 + 1} - 1 & \text{si } x < 0 \end{cases}$

- 1) Montrer que f est continue en 0.
- 2) a) Montrer que pour tout $x \in]-\infty, 0[$ on a : $\frac{x}{x^2+1}-1 \le f(x) \le \frac{-x}{x^2+1}-1$
 - b) Déduire $\lim f(x)$.
- 3) a) Monter que $\lim_{x \to a} f(x) = 1$
 - b) Calculer ces limites:

$$\lim_{x \to \to 1^+} f(\frac{x-2}{x-1})$$

$$\lim_{x \to +\infty} f(\frac{x}{x^2 + 1}) \qquad \lim_{x \to -\infty} f(x^2 + 1)$$

$$\lim_{x \to 0} f(x^2 + 1)$$

- 4) On suppose que f est strictement croissante sur $[0, +\infty]$.
 - a) Montrer l'équation f(x) = 0 admet dans $[0, +\infty[$ une unique solution α dans $[0, +\infty[$ puis vérifier que : $0.57 < \alpha < 0.58$
 - b) Déduire le tableau de signe de f(x) sur $[0, +\infty[$
 - c) Montrer que α vérifie $\sqrt{\alpha^2 + 1} = 2\alpha$
- 5) On considère les deux fonctions g et h définie sur $[0, +\infty[$ par $g(x) = \sqrt{x^2 + 1}$ et h(x) = 2x.
 - a) Vérifier que pour tout $x \in [0, +\infty[: f(x) = \frac{h(x) g(x)}{g(x)}]$
 - b) Etudier la position relative des courbes des fonctions g et h sur $[0, +\infty[$.

Exercice n°3: (6 points)

Soit la suite (U_n) définie sur IN par : $U_0 = 2$ et $U_{n+1} = \frac{2U_n}{2 + U_n}$

- 1) a) Montrer que pour tout n on a : $0 \le U_n \le 2$.
 - b) Montrer que (U_n) est décroissante.
 - c) Déduire que (U_n) est convergente puis calculer sa limite.
 - d) Montrer par récurrence que pour tout n on a : $U_n = \frac{2}{n+1}$
- 2) Soit la suite (S_n) définie sur IN par :

$$S_n = \sum_{K=0}^{n} (-1)^K U_K = U_0 - U_1 + U_2 - U_3 + \dots + (-1)^n U_n$$

- a) Montrer que : $S_{2n+2} S_{2n} = U_{2n+2} U_{2n+1}$ puis déduire que la suite (S_{2n}) est décroissante.
- b) Montrer que la suite (S_{2n+1}) est croissante.
- c) Montrer que pour tout n on a : $S_{2n+1} \le S_{2n}$
- d) Déduire que les suites (S_{2n}) et (S_{2n+1}) sont adjacentes.
- e) Déduire que la suite (S_n) converge vers un réel L puis vérifier que $1 \le L \le 2$.

Bon travail