

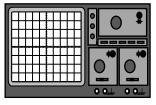
Le sujet comporte deux parties : Chimie : un seul exercice et trois parties de physique qui peuvent être traitées indépendamment.

Le sujet est répartie sur 4 pages numérotées de 1/4 à 4/4.

<u> Chimie : 7 points</u>

Exercice n°1:

Données: masses molaires atomiques en g.mol⁻¹: Ag: 107,9; Cr: 52; O: 16.


On mélange un volume $V_A = 50 \text{ mL}$ de solution de chromate de potassium, $2 \text{ K}^+ + \text{CrO}_4^{2^-}$, de concentration $C_A = 2,00.10^{-2} \text{ mol.L}^{-1}$ et un volume $V_B = 50 \text{ mL}$ de solution de nitrate d'argent, $Ag^+ + NO_3^-$, de concentration $C_B = 4,00.10^{-2} \text{ mol.L}^{-1}$. On observe l'apparition d'un précipité rouge brique de chromate d'argent $Ag_2\text{CrO}_4$. On filtre le mélange obtenu et on récupère le précipité. Après rinçage et séchage, on obtient une masse m = 0,21 g.

- 1) Écrire l'équation de la réaction
- 2) Déterminer les quantités d'ions argent Ag^+ et chromate CrO_4^{2-} dans l'état initial. Comment peut-on qualifier un tel mélange ? Justifier.
- 3) Dresser le tableau d'évolution du système réactionnel.
- 4) Calculer l'avancement maximal \boldsymbol{x}_m de la réaction.
- **5**)
- a) Définir le taux d'avancement final d'une réaction chimique et indiquer son intérêt.
- b) Déterminer le taux d'avancement final de la réaction. Conclure.

6)

- a) Déterminer la composition en quantités de matière du système dans l'état final.
- b) Donner le nom d'un tel état.

Physique: 13 points

Notre objectif est de déterminer la capacité C d'un condensateur par trois méthodes

- **A)** Première méthode: la charge du condensateur à l'aide d'un générateur du courant.
- 1) Définir d'un condensateur.
- 2) Le schéma du circuit utilisé est le suivant:

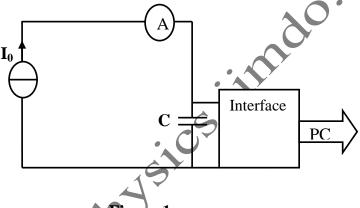
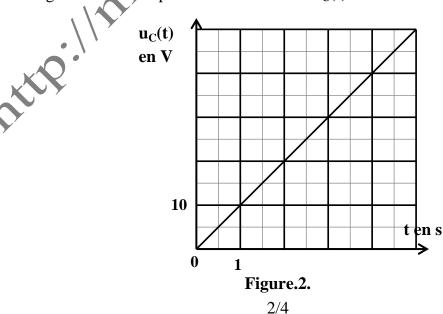
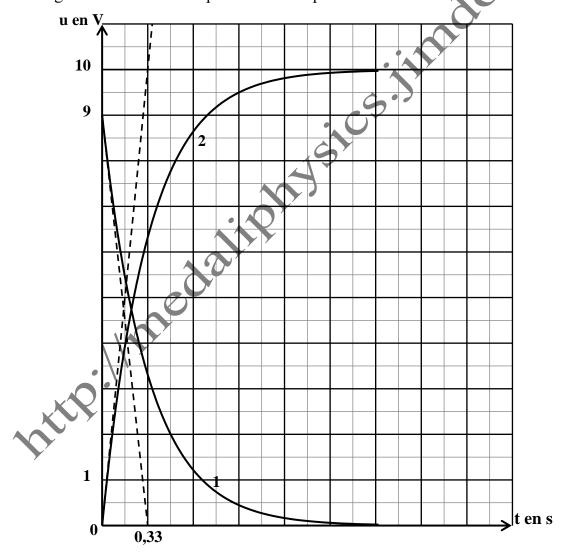



Figure 1

Le montage d'étude est constitué d'un générateur du courant délivrant un courant d'intensité constante I_0 =33 mA, un ampèremètre, un condensateur de capacité C, une interface d'acquisition qui joue le rôle d'un voltmètre et qui transmet les mesures vers un ordinateur qui permet de visualiser soit $u_C(t)$ ou/et q(t).


Le chronogramme obtenu pour les variations de $\mathbf{u}_{\mathbb{C}}(t)$:

- a) En utilisant le chronogramme établir l'expression de $\mathbf{u}_{\mathbb{C}}(t)$ en fonction \mathbf{t} .
- b) Écrire $\mathbf{u}_{\mathbf{C}}(\mathbf{t})$ en fonction de $\mathbf{I}_{\mathbf{0}}$, \mathbf{C} et \mathbf{t} .
- c) Déduire la capacité C du condensateur.
- d) Sur le condensteur, on trouve les indication suivantes : 50 V et 120 V. Donner la signification de chaque indication.
- e) Calculer la durée de temps maximale pour laquelle on peut laisser le condensateur se charger avec le montage précédent.

B) Deuxième méthode :

Cette méthode consiste à charger le condensateur monté en série avec un dipôle résistor de résistance \mathbf{R}_0 =90 Ω , à l'aide d'un générateur de tension délivrant une tension \mathbf{E} et en utilisant un oscilloscope bi-courbe à mémoire. Les deux grandeurs visualisées par l'oscilloscope sont les suivants :

1) Représenter le schéma du circuit permettant de visualiser ces deux grandeurs. Montrer les connexions de l'oscilloscope et la précaution à faire.

- 2) Justifier que l'oscillogramme 2 représente l'évolution de $\mathbf{u}_{\mathbf{C}}$ au cours de temps et que 1 correspond à $\mathbf{u}_{\mathbf{R}\mathbf{0}}(\mathbf{t})$.
- 3) En utilisant les oscillogrammes :
 - a) Déterminer la constante de temps τ du dipôle RC.
 - **b)** Calculer l'intensité du courant I_0 à l'instant initiale t=0.

4)

- a) Calculer la résistance R du circuit et montrer que le générateur présente une résistance interne **r** dont on déterminera la valeur.
- b) Calculer la capacité C du condensateur.

5)

- a) Établir l'équation différentielle régissant u_C(t).
- **b)** Vérifier que : $\mathbf{u_C}(\mathbf{t}) = 10(1 e^{\frac{\mathbf{t}}{0.33}})$ est une solution de l'équation précédente.
- c) Montrer par calcul que pour $t_1 = 1,51$ s, le condensateur peut être considéré comme complètement chargé.

C) Trosième méthode :

Le condensateur est initialement chargé, sa tension initiale est $U_0 = 10$ V, on le branche en série avec un moteur qui se met à tourner. Le moteur s'arrête après avoir effectué 4 tours comptés à l'aide d'un compteur de vitesse. Sachant qu'il dissipe une énergie égale à 4,125 10⁻² J pour faire un tour.

- Bon travail