## MINISTERE DE L'EDUCATION DIRECTION REGIONALE DE NABEUL

LYCEE RUE TAIEB ELMHIRI DE MENZEL TEMIME

EPREUVE : SCIENCES PHYSIQUES

NIVEAU : 4<sup>EME</sup> ANNEE SECONDAIRE SECTION : SCIENCES EXPERIMENTALES

**PROPOSE PAR:** TAWFIK BACCARI

[H<sub>2</sub>O<sub>2</sub>] (10 -2 mol.L-1)

20

t (min)

8

6

4

2

#### **DEVOIR DE CONTROLE N°1**

DATE : OCTOBRE 2016 DUREE : 2 H COEIFFICIENT : 4

#### CHIMIE: (9 PTS)



## CINETIQUE CHIMIQUE: VITESSE D'UNE REACTION CHIMIQUE (6 PTS)

L'eau oxygénée ( $H_2O_2$ ) réagit avec les ions iodures  $I^-$  suivant la réaction lente et totale d'équation :  $H_2O_2 + 2I^- + 2H_3O^+ \rightarrow I_2 + 4H_2O$  (I).

A t=0 on mélange, à une température  $\theta_1$  constante, les solutions aqueuses suivantes :

- une solution (S₁) d'iodure de potassium (KI) de concentration C₁ et de volume V₁=100 mL;
- une solution (S₂) d'eau oxygénée de concentration molaire C₂ et de volume V₂=80 mL;
- une solution d'acide sulfurique de volume  $V_3$ =20 mL (L'acide sulfurique est en excès).

La mesure de la quantité de matière du diiode  $(I_2)$  par dosage, a permis de tracer la courbe de la figure ci-contre, donnant l'évolution temporelle de la concentration molaire de  $H_2O_2$ .

- 1) Préciser, en le justifiant, le rôle (catalyseur ou réactif) des ions hydronium  $H_3O^+$  pour la réaction (I).
- 2) Montrer que les concentrations initiales des ions iodure et de l'eau oxygénée dans le mélange, s'expriment respectivement par :  $[I^-]_0 = \frac{1}{2}C_1$  et  $[H_2O_2]_0 = \frac{2}{5}C_2$ .
- 3) Dresser en avancement volumique y, le tableau descriptif de l'évolution de la réaction (1).
- de l'évolution de la réaction (l).
  4) a) Définir la vitesse volumique instantanée v<sub>v</sub>(t) de la réaction puis calculer sa valeur maximale.
  b) Expliquer qualitativement comment évolue la vitesse de la réaction au cours du temps ?
  Donner le facteur cinétique responsable à cette évolution.
- 5) En exploitant la courbe, déterminer les valeurs des concentrations molaires C<sub>1</sub> et C<sub>2</sub>.



# **CINETIQUE CHIMIQUE: LES FACTEURS CINETIQUES (3 PTS)**

On étudie la cinétique de la réaction d'équation :  $2I^- + S_2O_8^{2-} \rightarrow I_2 + 2SO_4^{2-}$ .

Dans des conditions expérimentales données dans le tableau ci-dessous, on prépare trois systèmes réactionnels  $(S_1)$ ,  $(S_2)$  et  $(S_3)$  contenus respectivement dans trois béchers identiques.

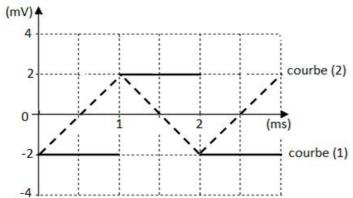
| Système        | [ I <sup>-</sup> ] <sub>0</sub> (mol.L <sup>-1</sup> ) | $[S_2O_8^{2-}]_0 \text{ (mol.L}^{-1})$ | T (°C) | Catalyseur      |
|----------------|--------------------------------------------------------|----------------------------------------|--------|-----------------|
| S <sub>1</sub> | 0,02                                                   | 0,05                                   | 20     | Sans catalyseur |
| S <sub>2</sub> | 0,02                                                   | 0,10                                   | 60     | Sans catalyseur |
| $S_3$          | 0,02                                                   | 0,20                                   | 60     | Avec catalyseur |

Sous chaque bécher, on a placé un papier blanc sur lequel est marquée une croix. Les croix sont identiques et les systèmes ont des volumes égaux à V=100 mL.

- 1) Préciser comment peut-on se rendre compte expérimentalement de l'évolution temporelle de chacun des systèmes.
- 2) Enumérer les facteurs cinétiques mis en jeu entre les systèmes  $(S_1 \text{ et } S_2)$ ,  $(S_1 \text{ et } S_3)$  et  $(S_2 \text{ et } S_3)$ .



3) On note les instants auxquels le diiode formé commence à masquer la croix dans chaque système. On obtient dans un ordre quelconque : t<sub>1</sub>= 30s, t<sub>2</sub>=42s et t<sub>3</sub> = 60 s. Représenter dans le même système d'axes, les allures des chronogrammes de l'avancement associé à chaque système.


## PHYSIQUE: (11 PTS)



## **ETUDE D'UNE BOBINE (4 PTS)**

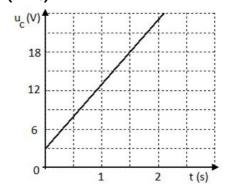
Dans le but de déterminer la valeur de la grandeur caractéristique d'une bobine (B), on réalise le circuit de la figure ci-contre, comportant :

- la bobine (B);
- un GBF de masse flottante et qui délivre une tension triangulaire ;
- un conducteur ohmique de résistance R=1 k $\Omega$  suffisamment grande pour pouvoir négliger la résistance interne de (B).
- 1) Donner le nom et la signification physique de la grandeur notée par la lettre L sur le schéma.
- 2) Ecrire la fonction caractéristique de la bobine (B).
- 3) Les courbes de la figure ci-dessous représentent les chronogrammes de la fem e(t) de la bobine et de la tension  $u_R(t) = R i(t)$ , aux bornes du conducteur ohmique.



- a) Justifier que la courbe (1) est le chronogramme de e(t).
- b) Déterminer la valeur de L.
- 4) On se propose de visualiser simultanément, l'oscillogramme de la fem e(t) sur la voie.2 et de la tension  $u_R(t)$  sur la voie.1.

Indiquer sur un schéma les connexions à l'oscilloscope, tout en précisant les précautions expérimentales à prendre.




## **ETUDE D'UN CONDENSATEUR : (7 PTS)**

#### A. CHARGE DU CONDENSATEUR PAR UN GENERATEUR DE COURANT : (2 PTS)

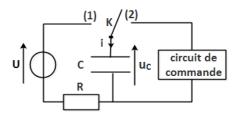
On réalise un circuit électrique comprenant :

- un générateur qui débite un courant d'intensité constante I=25 μA.
- un condensateur de capacité C. La particularité de ce condensateur est qu'il ne peut pas se vider complètement : il présente une tension à vide égale à U<sub>0</sub>.
- 1) Comment se rendre compte expérimentalement que le condensateur est non déchargé?
- 2) La mesure à différents instants, de la tension  $u_C$  aux bornes du condensateur, a permis de tracer la courbe de la figure ci-contre modélisant l'évolution temporelle de cette tension :  $u_C = f(t)$ .



R

R i(t)


2/3 SCIENCES PHYSIQUES\_ 4SC.EXP\_DEVOIRE DE CONTROLE N°1


- a) Déterminer graphiquement la valeur de la tension à vide U<sub>0</sub>.
- b) Montrer que la capacité du condensateur vaut 2,5 μF.

## B. CIRCUIT RC-SERIE: (5 PTS)

A l'aide du condensateur précédent de capacité C=2,5  $\mu$ F, on réalise un circuit RC-série aux bornes duquel on applique un échelon de tension de valeur U comme l'indique le schéma de la figure ci-contre.

La courbe de la figure ci-après représente le chronogramme de la tension instantanée  $u_{\text{C}}$  aux bornes du condensateur. L'axe des temps est gradué en millisecondes.





- 1) Qu'est-ce qu'un échelon de tension?
- 2) Préciser s'il s'agit d'une courbe de charge ou de décharge. En déduire la position dans laquelle l'interrupteur est placé.
- 3) Rappeler les fonctions caractéristiques de chacun du résistor et du condensateur.
- 4) Par application de la loi des mailles, établir l'équation différentielle :  $u_C(t) + RC \frac{du_C}{dt} = U$ .
- 5) En admettant que la solution de l'équation différentielle peut s'écrire sous la forme :  $u_C(t) = u_C(f) + [u_C(0) u_C(f)]e^{-\alpha t}$ ; où  $u_C(0)$  et  $u_C(f)$  représentent respectivement les valeurs, initiale et finale, de la tension  $u_C(t)$  Exprimer  $u_C(t)$  en fonction de  $U_0$ , U, R et C.
- 6) En exploitant la courbe, déterminer la valeur de :
  - a) la tension U.
  - b) la constante de temps du circuit RC-série et déduire la valeur de la résistance R.
- 7) Calculer les valeurs initiale i(0) et finale i(f) de l'intensité du courant i(t).
- 8) On modélisera simplement le circuit de commande de la sirène par un résistor de résistance  $R_1$ =4,70  $M\Omega$ . A la fin de la charge, l'interrupteur K a basculé en position (2), à un instant pris comme nouvelle origine des temps. La sirène ne se déclenche que si la tension aux bornes de son circuit de commande est supérieure à  $U_{min}$  = 9 V.

Déterminer la durée minimale qui s'écoule à partir de l'instant du basculement de l'interrupteur dans la position (2), pour que la sirène retentisse (sonne).

 $\mbox{NB}$  : On admet que l'expression générale de  $u_{C}(t)$  en phase de charge est valable en phase de décharge.

