I Notion de suite réelle

1) Définition:

Soit I une partie non vide de IN. On appelle suite réelle définie sur I, toute application U de I dans IR.

- Le réel U(n) est noté U_n il est appelé terme général de la suite U. Cette notation est appelée notation indicielle.
- V Une suite U, définie sur I, est aussi notée (U_n)_n∈ I.
- > Si I est fini, la suite est dite finie.
- Si I est infini, la suite est dite infinie.
- $\blacktriangleright \quad \text{La somme } U_0 + U_1 + \ldots + U_n \, \text{est not\'ee} \, \textstyle \sum_{i=0}^n U_i$

2) Mode de présentation d'une suite

Une suite réelle est définie soit par :

 \succ Son terme général U_n . (Pour tout entier naturel n, on peut déterminer directement U_n)

Exemple: $U_n = 2n^2 - 3$; $V_n = \sqrt{n-5}$ (Attention (V_n) est définie pour $n \ge 5$).

> Une relation de récurrence.

$$\begin{split} &\textbf{Exemple:} (U_n) \text{ définie sur IN par } \begin{cases} U_0 = 1 \\ U_{n+1} = \sqrt{1 + U_n^2}. \text{ En partant de } U_0 = 1, \end{cases} \\ &\text{permet de calculer de proche en proche les termes de la suite } (U_n) \\ &(Wn) \text{ définie sur IN par } \begin{cases} W_0 = 1, & W_2 = 3 \\ W_{n+2} = W_{n+1} + W_n. \end{cases} \text{ En partant de } W_0 = 1 \text{ et } W_2 = 3, \end{cases} \\ &\text{permet de calculer de proche en proche les termes de la suite } (W_n). (W_3 = W_2 + W_1 = 1 + 3 = 4) \end{split}$$

Remarque: Parfois d'une relation de récurrence, on peut déterminer le terme général.

3) Suites arithmétiques :

a) Définition:

Soit n_0 un élément de IN et $I = \{n \in IN, n \ge n_0\}$.

Une suite U, définie sur I, est une suite arithmétique s'il existe un réel r tel que, pour tout n de I, on ait : $U_{n+1} = U_n + r$. Le réel r est appelée la raison de la suite U.

- b) Remarque: Pour montrer qu'une telle suite est arithmétique, soit exprimer U_{n+1} en fonction de U_n , telle que $U_{n+1} = U_n + r$, soit montrer que $U_{n+1} U_n = r$ (r est une constante ne dépend pas de n).
- c) Exemple : (U_n) définie sur IN telle que $U_0=2$ et $U_{n+1}=U_n+5$, est arithmétique de raison 5.
- d) Conséquences : Soit U une suite arithmétique de premier terme U_0 et de raison r.
 - Pour tout n de IN, on a : $U_n = U_0 + nr$
 - La somme des n premiers termes de cette suite est : $S_n = \frac{n(U_0 + U_{n-1})}{2}$ En général, $s = \sum_{i=p}^n U_i = (n-p+1)(\frac{U_n + U_p}{2})$
- e) Exercice: (Le but de cet exercice c'est déterminer l'expression du terme général U_n de la suit (U_n) définie par une relation de récurrence faisant intervenir la notion d'une suite arithmétique).

Enoncé:

Soit (U_n) la suite définie sur IN par
$$\begin{cases} U_0 = 1 \\ U_{n+1} = \sqrt{3 + U_n^2} \end{cases}$$

- 1) a) Calculer U1et U2
 - b) Vérifier que la suite (Un) n'est pas arithmétique
- 2) Soit (Vn) la suite définie sur IN par $V_n = 1 + U_n^2$
 - a) Montrer que (V_n) est une suite arithmétique de raison r =3
 - b) Exprimer V_n en fonction de n puis U_n en fonction de n.

Corrigé

1) a)
$$U_1 = 2$$
 et $U_2 = \sqrt{7}$

- b) On a $U_1 U_0 \neq U_2 U_1$ et par suite (U_n) n'est pas arithmétique.
- 2) a) On a $\mathbf{V_{n+1}} = 1 + U_{n+1}^2 = 1 + (3 + U_n^2) = 3 + (1 + U_n^2) = \mathbf{3} + \mathbf{V_n}$; par suite (V_n) est une Suite arithmétique de raison 3.
 - b) $V_n = V_0 + 3n$ tel que $V_0 = 1 + U_0^2 = 2$ et donc $V_n = 2 + 3n$. Or $V_n = 1 + U_n^2$ signifie que $2 + 3n = 1 + U_n^2$ par suite $U_n = \sqrt{1 + 3n}$. Puisqu'elle est à termes positifs.

4) Suites géométriques :

a) Définition:

Soit n_0 un élément de IN et $I = \{n \in IN, n \ge n_0\}.$

Une suite U, définie sur I, est une suite géométrique s'îl existe un réel q tel que, pour tout n de I, on ait : $U_{n+1} = qU_n$. Le réel q est appelée la raison de la suite U.

- **b)** Remarque :Pour montrer qu'une telle suite est géométrique, soit exprimer U_{n+1} en fonction de U_n , telle que $U_{n+1} = qU_n$, soit montrer que $\frac{u_{n+1}}{u_n} = q$ (q est une constante ne dépend pas de n).
- c) Conséquences : Soit U une suite géométrique de premier terme U_0 et de raison non nulle q.
 - Pour tout n de IN, on a : $U_n = q^n \cdot U_0$
 - La somme des n premiers termes de cette suite est : $S_n = \begin{cases} U_0\left(\frac{1-q^n}{1-q}\right) & \text{, si } q \neq 1 \\ nU_0 & \text{, si } q = 1 \end{cases}$

En général :
$$S = \sum_{i=P}^{i=n} U_i = U_0(\frac{1-q^{n-p+1}}{1-q})$$
 si $q \neq 1$; $S = (n-p+q)U_0$, si $q = 1$

II - Monotonie d'une suite

a) Vocabulaires

Soit n_0 un entier naturel et U une suite définie sur $I = \{n \in IN, n \ge n_0\}$.

- Si pour tout n de I, $U_{n+1} = U_n$, on dit que (U_n) est constante sur I.
- Si pour tout n de I, $U_{n+1} \ge U_n$, on dit que (U_n) est croissante sur I.
- Si pour tout n de I, $U_{n+1} \le U_n$, on dit que (U_n) est décroissante sur I.
- Une suite es dite non monotone si elle ni constante, ni croissante, ni décroissante. (Exemple U_n = (-1)ⁿ; c'est une suite alternée)

b) Méthodes pour étudier la monotonie d'une suite

1ère méthode

Etudier la monotonie d'une suite U revient à déterminer le signe de U_{n+1} – U_n

❖ 2ème méthode

Pour une suite U à termes strictement positifs, étudier la monotonie de la suite U, revient à comparer $\frac{U_{n+1}}{U_n}$ à 1.

- Si pour tout n de IN, <sup>U_{n+1}/_{U_n} = 1, la suite est constante.
 Si pour tout n de IN, <sup>U_{n+1}/_{U_n} ≥ 1, la suite est croissante.
 </sup></sup>
- Si pour tout n de IN, $\frac{U_{n+1}}{U_n} \le 1$, la suite est décroissante.

❖ 3ème méthode

Si une suite U est définie sur IN par : Un = f(n), Etudier la monotonie de U, revient à étudier le sens de variation de f sur $[0; +\infty]$.

4ème méthode

Si une suite U est définie sur IN par : $U_{n+1} = f(U_n)$, Etudier la monotonie de U, revient à comparer f(x) à x. (à l'aide de la représentation graphique de f et la droite d'équation y = x).

II - Convergence des suites réelles

1) Définition : (Limite finie)

Soit n_0 un entier naturel et U une suite définie sur $I = \{n \in IN, n \ge n_0\}$ et l un réel

On dit que la suite U admet pour limite l, si pour tout réel & strictement positif, il

existe un entier naturel p tel que : $(n \in I \text{ et } n \ge p) \Rightarrow |U_n - l| < \varepsilon$

- On dit que la suite U converge vers l.
- Lorsque la suite n'est pas convergente, on dit qu'elle est divergente.
- 2) Théorème 1 : Si une suite admet une limite l, alors cette limite est unique.

- 3) Théorème 2 : Toute suite convergente est bornée.
- 4) Théorème 3 : Toute suite croissante et majorée est convergente.

- Toute suite décroissante et minorée est convergente.

III- Image d'une suite par une fonction continue

1) Théorème 1:

Si une fonction f est continue en l ($l \in IR$) et si une suite U converge vers l, alors la suite ($f(U_n)$) converge vers f(l).

2) Exemple : Soit la suite V définie sur IN* par : Vn = n sin $\frac{1}{n}$. Déterminons $\lim_{n\to +\infty} V_n.$

Pour n de IN*, on peut écrire : $V_n = \frac{\sin \frac{1}{n}}{\frac{1}{n}}$

Soit U la suite définie sur IN* par : $U_n = \frac{1}{n}$ et f la fonction définie sur IR par :

 $\begin{cases} f(x) = \frac{\sin x}{x} & \text{si } x \neq 0 \\ f(0) = 1 \end{cases}. \text{ La suite } U \text{ converge vers } 0 \text{ et la fonction } f \text{ est continue en } 0$

(puisque $\lim_{x\to +0}\frac{\sin x}{x}=1$). Alors la suite (f(Un)) converge vers f(0), c'est-à-dire $\lim_{n\to +\infty}V_n=1.$

3) Corollaire:

Soit f une fonction continue sur un intervalle D et soit U une suite à valeurs dans D qui converge vers un réel l. Si $U_{n+1}=f(U_n)$ et si $l\in D$ alors l=f(l)

4) Exemple:

Enoncé:

Soit la suite U définie sur IN par : $\begin{cases} U_0 = 1 \\ U_{n+1} = \sqrt{2 + \, U_n} \end{cases}$

- 1) Montrer que la suite U est positive.
- 2) Montrer que la suite U est majorée par 2 et qu'elle converge vers un réel l≥0
- 3) Déterminer l.

Corrigé

1) Montrons par récurrence que pour tout n de IN, Un > 0

On a : $U_0>0$ et $U_1=\sqrt{3}>0$. Soit n>1 et supposons que $U_n>0$ et montrons que $U_{n+1}>0$.

On a: $U_n > 0 \Rightarrow 2 + U_n > 0 \Rightarrow \sqrt{2 + U_n} > 0 \Rightarrow U_{n+1} > 0$ et donc U est positive.

- 2) Montrons par récurrence que la suite U est croissante et puis majorée par 2 pour qu'on puisse conclure qu'elle est convergente.
- ❖ Montrons par récurrence, que pour tout n de IN, $U_n \le 2$.

On a
$$U_0 = 1 \le 2$$
 et $U_1 = \sqrt{3} \le 2$.

Soit $p \in IN$. Supposons que $U_p \le 2$ et montrons que $U_{p+1} \le 2$

$$\begin{array}{ll} \text{On a}: U_p \leq 2 & \Rightarrow & U_p + 2 \leq 4 \\ \\ \Rightarrow & \sqrt{U_p + 2} \leq \sqrt{4} \\ \\ \Rightarrow & U_{p+1} \leq 2 \end{array}$$

Il en résulte, d'après le principe de raisonnement par récurrence, que la suite U est majorée par 2.

 $\bullet \quad \text{On a: } U_0 = 1 \text{ et } U_1 = \sqrt{3} \text{ alors } U_0 < U_1$

Soit $p \in IN.$ Supposons que $U_p < U_{p+1}$ et montrons que $U_{p+1} < U_{p+2}$

$$\begin{aligned} \text{On a}: U_p < U_{p+1} & \Rightarrow & 2 + U_p < 2 + U_{p+1} \\ \\ \Rightarrow & \sqrt{2 + U_p} < \sqrt{2 + U_{p+1}} \\ \\ \Rightarrow & U_{p+1} < U_{p+2} \end{aligned}$$

Il en résulte, d'après le principe de raisonnement par récurrence, que la suite U est croissante.

- ❖ La suite U, étant croissante et majorée donc elle converge vers un réel l. Comme, pour tout n de IN, $U_n \ge 0$ alors $l \ge 0$
- 3) On a : $U_{n+1} = f(U_n)$ où f est la fonction $x \longrightarrow \sqrt{2+x}$. La fonction f étant continue, On déduit du corollaire précédent que : l = f(l) c'est-à-dire $l = \sqrt{2+l}$. Il suit : l = 2

IV - Etude de suites définies par une somme

Exercice 1:

Enoncé:

Soit la suite U définie sur IN* par : $U_n = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2}$

- 1) Etudier la monotonie de la suite U.
- 2) a) Montrer que, pour tout $k \geq 2, \frac{1}{k^2} < \frac{1}{k-1} \frac{1}{k}$
 - b) En déduire que, pour tout n de IN*, $U_n \le 2 \frac{1}{n}$
- 3) En déduire que la suite U est convergente et que la limite est inférieure ou égale à 2

Corrigé

1)
$$U_{n+1} - U_n = (\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} + \frac{1}{(n+1)^2}) - (\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2})$$

$$= \frac{1}{(n+1)^2} > 0. \text{ Donc la suite U est strictement croissante.}$$

- 2) a) Pour $k \geq 2, \frac{1}{k-1} \frac{1}{k} = \frac{1}{k^2 k} > \frac{1}{k^2} \, \mathrm{en} \, \, \mathrm{effet} \, \, 0 \, < k^2 k \, < \, k^2$
 - b) D'après l'inégalité précédente, on déduit que :

$$\frac{1}{2^2} < \frac{1}{2-1} - \frac{1}{2}$$

$$\frac{1}{3^2} < \frac{1}{3-1} - \frac{1}{3}$$

.

. .

$$\frac{1}{(n-1)^2} < \frac{1}{n-2} - \frac{1}{n-1}$$

$$\frac{1}{n^2} < \frac{1}{n-1} - \frac{1}{n}$$

On additionne membre à membre, on obtient : $\frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} < 1 - \frac{1}{n}$ et par suite $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} < 1 + \left(1 - \frac{1}{n}\right)$. Il en résulte que $U_n \le 2 - \frac{1}{n}$

3) D'après 2) b), on déduit que la suite U est majorée par 2 et d'après 1) elle est croissante, il en résulte qu'elle est convergente vers un réel $1 \le 2$.

Exercice 2:

Enoncé:

- 1) Montrer par récurrence que, pour tout n de IN*, $\frac{1}{n!} \leq \frac{1}{2^{n-1}}$
- 2) On considère la suite (U_n) définie sur IN* par : $U_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}$ Déduire de la première question que cette suite est majorée par 3.

En déduire qu'elle est convergente.

Corrigé

1) On vérifie cette relation pour n = 1, n = 2 et n = 3.

Soit p \in IN. Supposons que $\frac{1}{p!} \le \frac{1}{2^{p-1}}$ et montrons que $\frac{1}{(p+1)!} \le \frac{1}{2^p}$

On a :
$$\frac{1}{p!} \le \frac{1}{2^{p-1}}$$
 $\Rightarrow \frac{1}{(p+1)p!} \le \frac{1}{(p+1)2^{p-1}} \le \frac{1}{2 \times 2^{p-1}} = \frac{1}{2^p}$ en effet $p \ge 2$; $\frac{1}{p+1} \le \frac{1}{2}$ $\Rightarrow \frac{1}{(p+1)!} \le \frac{1}{2^p}$

- 2) D'après la relation de récurrence précédente, on déduit que :
 - $\frac{1}{1!} \le \frac{1}{2^0}$

$$\frac{1}{2!} \leq \frac{1}{2!}$$

. .

$$\frac{1}{n!} \le \frac{1}{2^{n-1}}$$

On additionne membre à membre, on obtient : $\frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots \dots + \frac{1}{n!} \leq \sum_{k=0}^{n-1} (\frac{1}{2})^k$

ainsi
$$\frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} \le \left(\frac{1}{2}\right)^0 \left(\frac{1 - \left(\frac{1}{2}\right)^n}{1 - \frac{1}{2}}\right) \le \frac{1}{1 - \frac{1}{2}} = 2$$

et par suite
$$1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} \le 1 + 2 = 3$$

Il en résulte que $U_n \le 3$

On a : $U_{n+1} - U_n = \frac{1}{(n+1)!} \ge 0$, alors la suite (U_n) est croissante de plus majorée donc convergente

Exercice 3:

Enoncé:

Soit a un réel strictement positif. On pose, pour tout entier naturel $n \ge 1$,

$$I_{\rm n} = \int_0^a \frac{(a-t)^n}{{\rm n}!} \ e^t \ dt \ \ et \ \ S_{\rm n} = 1 + \alpha + \frac{\alpha^2}{2!} + \ ... \ ... + \frac{\alpha^n}{n!}$$

- 1) Montrer que $e^a = 1 + a + \int_0^a (a t)e^t dt = S_1 + I_1$
- 2) Démontrer que $I_n = \frac{a^{n+1}}{(n+1)!} + I_{n+1}$
- 3) Démontrer par récurrence que $e^a = S_n + I_n$
- 4) Montrer que la suite S_n est croissante et majorée par e^a
- 5) En déduire que $\lim_{n \to +\infty} \frac{a^n}{n!} = 0$
- 6) Calculer $\int_0^a \frac{(a-t)^n}{n!} \ dt,$ en déduire que $0 \le I_n \le \frac{a^{n+1}}{(n+1)!} \ e^a$
- 7) Montrer alors que $\lim_{n\to+\infty} (1+a+\frac{a^2}{2!}+\dots+\frac{a^n}{n!})=e^a$

Corrigé

1) On a : D'une part
$$S_1 = 1 + a$$
 et $I_1 = \int_0^a \frac{(a-t)^1}{1!} e^t dt = \int_0^a (a-t) e^t dt$
Par suite $S_1 + I_1 = 1 + a + \int_0^a (a-t) e^t dt$

D'autre part en intégrant par partie $\int_0^a (a-t)\; e^t\; dt$ en posant $u \equiv (a-t)\; ; u' \equiv$ - 1

et v' = e^t; v = e^t, on obtient
$$\int_0^a (a - t) e^t dt = [(a - t) e^t]_0^a + \int_0^a e^t dt$$

= $-a + e^a - 1$

et par suite $e^a = 1 + a + \int_0^a (a - t) e^t dt$

Il en résulte que $e^a=1+a+\int_0^a (a-t)e^t dt=S_1+I_1$

2) En intégrant par partie $I_n=\int_0^a\frac{(a-t)^n}{n!}\;e^t\;dt,$ en posant $u'=\frac{(a-t)^n}{n!}\;;\;u=-\frac{(a-t)^{n+1}}{(n+1)!}$

et $v = e^t$; $v' = e^t$, on obtient

$$\begin{split} I_n &= \int_0^a \frac{(a-t)^n}{n!} \ e^t \ dt = [-\frac{(a-t)^{n+1}}{(n+1)!} e^t]_0^a + \int_0^a \frac{(a-t)^{n+1}}{(n+1)!} \ e^t \ dt \\ I_n &= \frac{a^{n+1}}{(n+1)!} + \ I_{n+1} \end{split}$$

3) On a : $e^a = S_1 + I_1(d'après 1)$

Soit $p \in IN$. Supposons que $e^a = S_p + I_p$ et montrons que $e^a = S_{p+1} + I_{p+1}$

On a:
$$S_{p+1} = 1 + a + \frac{a^2}{2!} + \dots + \frac{a^{p+1}}{(p+1)!}$$
 et $I_{p+1} = I_p - \frac{a^{p+1}}{(p+1)!}$ (d'après 2))

En déduit que $S_{p+1} + I_{p+1} = S_p + I_p = e^a$

4) On a: $S_{n+1} - S_n = \frac{a^{n+1}}{(n+1)!} \ge 0$, par suite la suite (S_n) est croissante

 $\mathrm{On}\; a: \mathrm{I}_n \geq 0 \;\; \mathrm{en}\; \mathrm{effet}\; \mathrm{pout}\;\; 0 \leq t \leq a \; \mathrm{on}\; a: (a-t)^n \geq 0 \; \mathrm{et}\; \mathrm{par}\; \mathrm{suite}\; \int_0^a \frac{(a-t)^n}{n!}\; e^t\; dt\; \geq 0$

Ainsi $S_n = e^a - \ I_n \ \leq \ e^a$ et par suite (S_n) est majorée par e^a

5) On a d'après 4), la suite (Sn) est croissante et majorée, alors elle est convergente et par

suite
$$\lim_{n \to +\infty} \frac{a^n}{n!} = 0$$

6) On
$$a:I_n=\int_0^a \frac{(a-t)^n}{n!} \ dt = \ [-\frac{(a-t)^{n+1}}{(n+1)!}]_0^a = \frac{a^{n+1}}{(n+1)!} \le \ \frac{a^{n+1}}{(n+1)!}e^a \ car \ e^a > 1$$

Il en résulte que $0 \le I_n \le \frac{a^{n+1}}{(n+1)!} e^a$

7) On a :
$$\lim_{n \to +\infty} \frac{a^n}{n!} = 0$$
 signifie que $\lim_{n \to +\infty} \frac{a^{n+1}}{(n+1)!} = 0$, ainsi

$$\lim_{n \to +\infty} \frac{a^{n+1}}{(n+1)!} e^a = e^a \left(\lim_{n \to +\infty} \frac{a^{n+1}}{(n+1)!} \right) = 0$$
 et donc $\lim_{n \to +\infty} I_n = 0$

Or on a : $S_n + I_n = e^a$ en déduit que $\lim_{n \to +\infty} S_n = e^a$, autrement dit

$$\lim_{n \to +\infty} (1 + a + \frac{a^2}{2!} + \dots + \frac{a^n}{n!}) = e^a$$

Remarque : Concernant la limite de la suite (Un) de l'exercice n°2, en déduit que

$$\lim_{n \to +\infty} U_n = e$$
 puisque a = 1.

Exercice 4:

Enoncé

n est un entier strictement supérieur à 1.

Soit f_n la fonction définie sur]0; $+\infty[$ par : $f_n(x)=x^nln(x)$.

- 1. Etudier les variations de f_n .
- 2. Donner l'allure générale des courbes représentatives C_n des fonctions f_n . On précisera en particulier, leurs positions relatives.
- 3. Démontrer que l'équation $f_n(x)=1\;\;$ admet une solution unique $\,x_n\;$ et que $\,1<\,x_n\;$.
- 4. Démontrer que la suite de terme général x_n , $n \geq 2$ est décroissante.
- 5. On pose $t_n = (x_n)^n$. Montrer que $t_n ln(t_n) = n$.
- 6. Montrer que pour tout, x > 0, $x 1 \le x \ln(x)$, puis que $1 \le t_n \le n + 1$.
- 7. En déduire un encadrement de x_n .
- 8. Démontrer que la suite (x_n) admet une limite que l'on précisera.

1. Corrigé

2. On a pour tout $n \geq 1,\, f_n$ est définie, continue et dérivable sur $]0\;;+\infty[$

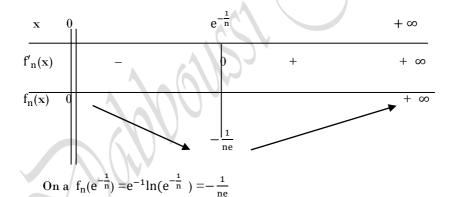
$$\begin{split} f'_n(x) &= nx^{n-1}ln(x) + \frac{x^n}{x} = nx^{n-1}ln(x) + x^{n-1} = x^{n-1} \left(nln(x) + 1\right) \\ f'_n(x) &= 0 \text{ signifie } x^{n-1}(nln(x) + 1) = 0 \\ \\ &\text{signifie } x^{n-1} = 0 \text{ ou } nln(x) + 1 = 0 \end{split}$$

signifie x = 0 ou $x = e^{-\frac{1}{n}}$ d'où $x = e^{-\frac{1}{n}}$

On a $\lim_{x\to 0^+} f_n(x) = \lim_{x\to 0^+} x^n \ln(x) = 0$, f_n est continue à droite de 0.

On a
$$\lim_{x \to +\infty} f_n(x) = \lim_{x \to +\infty} x^n \ln(x) = +\infty$$

Tableau de variations



3. On a
$$\lim_{x \to +\infty} f_n(x) = \lim_{x \to +\infty} x^n \ln(x) = +\infty$$
 et $\lim_{x \to +\infty} \frac{f_n(x)}{x} = \lim_{x \to +\infty} x^{n-1} \ln(x) = +\infty$

donc C_nadmet une branche parabolique de direction (OJ).

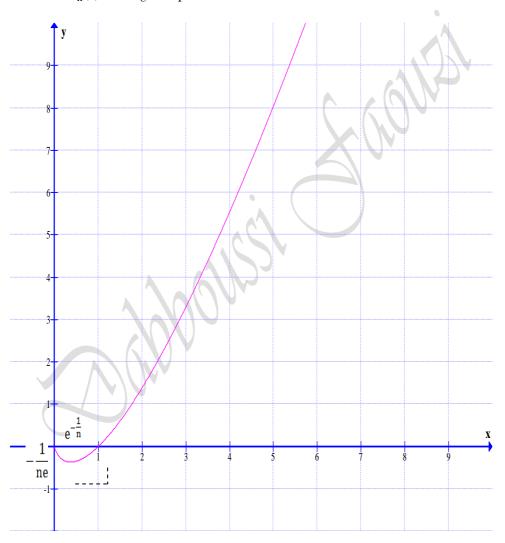
Pour $x\in \]0\ ;1]$ on a $x^{n+1}ln(x)\leq x^nln(x)$ c'est-à-dire $f_{n+1}(x)\leq \ f_n(x)$ d'où C_{n+1}

est au dessous de C_n

Pour $x\in [1\;;+\infty[\text{ on a }x^{n+1}ln(x)\geq x^{n}ln(x)\text{ c'est-à-dire }f_{n+1}(x)\geq \text{ }f_{n}(x)\text{ d'où }$

 C_{n+1} est au dessus de $\ C_n$

On a $f_n(x) = 0$ signifie que x = 0 ou x = 1.



- 3. On a f_n est strictement croissante sur $[1; +\infty[$ et comme $f_n(1)=0$ et $\lim_{x\to +\infty} f_n(x)=+\infty$ alors il existe un unique réel $x\in]1; +\infty[$ tel que $f_n(x)=1$.
- 4. On a f_{n+1} est strictement croissante sur $[1; +\infty[$

$$f_{n+1}(x_{n+1}) - f_{n+1}(x_n) = 1 - x_n^{n+1} \ln(x_n) = 1 - x_n(x_n \ln(x_n)) = 1 - x_n < 0 \text{ d'où}$$

 $x_{n+1} < x_n$ et par suite la suite (x_n) , n > 2 est strictement décroissante.

5.
$$t_n \ln(t_n) = (x_n)^n \ln(x_n)^n = n(x_n)^n \ln(x_n) = nf_n(x_n) = n$$
, car $f_n(x_n) = 1$

6. pour
$$x > 0$$
, on pose g la fonction définie par $g(x) = x \ln(x) - x + 1$

g est bien définie, continue et dérivable sur]0 ; + ∞ [et tel que g'(x) = $\ln(x)$ qui s'annule en 1

On a
$$\lim_{x\to 0^+} g(x) = 1$$
 et $\lim_{x\to +\infty} g(x) = +\infty$ et $g(1) = 0$, donc g est positive sur

$$]0; +\infty[$$
 c'est-à-dire pour tout $x > 0$, $x \ln(x) - x + 1 > 0$ ou $x - 1 < x \ln(x)$.

On a pour
$$x \geq 0, \ (x_n) > 1$$
 cela entraine que $(x_n)^n \geq 1$ d'où $t_n > 1$ ça d'une part

D'autre part $t_n-1\leq t_n ln(t_n)$ c'est-à-dire $t_n-1\leq n$ ou $t_n\leq n+1$. En résulte que $1\leq t_n\leq n+1$.

7. On a
$$1 \leq t_n \leq n+1$$
 signifie $1 \leq (x_n)^n \leq n+1$

signifie
$$ln(1) \le ln(x_n)^n \le ln(n+1)$$

(car la fonction ln est strictement croissante sur $[1; +\infty[$)

signifie
$$0 \le n \ln(x_n) \le \ln(n+1)$$

signifie
$$0 \le \ln(x_n) \le \frac{\ln(n+1)}{n}$$

$$\text{signifie } e^0 \ \leq \ e^{ln(x_n)} \ \leq \ e^{\frac{ln(n+1)}{n}}$$

signifie
$$1 \le x_n \le e^{\frac{\ln(n+1)}{n}}$$

(car la fonction exponentielle est strictement croissante sur $[1; +\infty[$)

8. On a la suite (x_n) est décroissante et minorée par 1, donc elle est convergente c'est-à-

dire elle admet une limite et comme $\lim_{n\to+\infty}\frac{\ln(n+1)}{n}=0$, alors $\lim_{n\to+\infty}e^{\frac{\ln(n+1)}{n}}=1$, cela entraine que $\lim_{n\to+\infty}x_n=1$.

Exercice 5:

Enoncé

On définit la suite réelle (u_n) par : $\begin{cases} u_0=0\\ u_1=a \end{cases} \text{ et } \ \forall \ n\in \ \mathbb{N}, u_{n+2}=pu_{n+1}-(p-1)u_n \\ \text{où } p \ \in \ \mathbb{R}_+\setminus \{0,1,2\}$

- 1. On pose, \forall $n \in \mathbb{N}$, $w_n = u_{n+1} u_n$. Montrer que (w_n) est une suite géométrique et calculer w_n en fonction de p, n et a.
- 2. On pose, \forall $n \in \mathbb{N}$, $t_n = u_{n+1} (p-1)u_n$. Montrer que (t_n) est une suite constante et calculer t_n en fonction de a.
- 3. Calculer u_n en fonction de w_n et t_n , puis en fonction de p, n et a.
- $\text{4.} \qquad \text{On d\'efinit la suite r\'eelle } (v_n) \text{ par : } \begin{cases} v_0 = 1 \\ v_1 = e^a \text{ et } \forall \text{ } n \in \mathbb{N}, v_{n+2} = \frac{(v_{n+1})^p}{(v_n)^{p-1}} \end{cases}$
 - a) Justifier la définition de (v_n) en montrant que $\forall \ n \in \ \mathbb{N}, \, v_n > 0.$
 - b) Montrer que $\forall n \in \mathbb{N}$, $\ln(v_n) = u_n$.
 - c) En déduire l'expression de V_n en fonction de p, n et a.
 - d) Déterminer, suivant de p et a, la limite de v_n lorsque n tend vers $+\infty$.

Corrigé

1.
$$w_{n+1} = u_{n+2} - u_{n+1} = pu_{n+1} - (p-1)u_n - u_{n+1}$$

 $= (p-1)(u_{n+1} - u_n)$
 $= (p-1)w_n$

 $\mathrm{donc}\,(w_n) \; \mathrm{est} \; \mathrm{une} \; \mathrm{suite} \; \mathrm{g\'{e}om\'{e}trique} \; \mathrm{de} \; \mathrm{raison} \; (p \; \text{-} 1), \; \; \mathrm{d'o\`{u}} \; \; w_n = \; w_0 (p-1)^n \; \mathrm{avec}$

 $w_0 = u_1 - \, u_0 = a \, \mathrm{et} \, \mathrm{en} \, \mathrm{r\'esulte} \, \mathrm{que} \, w_n = \, a(p-1)^n$

2.
$$t_{n+1} = u_{n+2} - (p-1)u_{n+1} = pu_{n+1} - (p-1)u_n - (p-1)u_{n+1} = u_{n+1} - (p-1)u_n = t_n$$
 d'où (t_n) est constante $t_n = t_0 = u_1 - (p-1)u_0 = a$

3. On a
$$w_n = u_{n+1} - u_n$$
 et $t_n = u_{n+1} - (p-1)u_n$ d'où $w_n - t_n = (p-1)u_n - u_n = (p-2)u_n$ et par la suite $u_n = \frac{w_n - t_n}{p-2} = \frac{a(p-1)^n - a}{p-2} = \frac{a((p-1)^n - 1)}{p-2}$

4. a) On a
$$v_0 = 1 > 0$$
 et $v_1 = e^a > 0$

Supposant le résultat est vrai jusqu'à l'ordre n+1 ; c'est-à-dire $v_k>0$ pour tout $k\leq n+1 \text{ et montrons que } v_{n+2}>0.$

On a
$$v_{n+2} = \frac{(v_{n+1})^p}{(v_n)^{p-1}} > 0$$
 puisque $v_{n+1} > 0$ et $v_n > 0$ ainsi $(v_{n+1})^p$ et $(v_n)^{p-1} > 0$

d'où (v_n) est bien définie et pour tout n , $v_n > 0$

b) On a
$$\ln(v_0) = \ln(1) = 0 = u_0$$
 et $\ln(v_1) = \ln(e^a) = a = u_1$ supposons que le résultat est vrai jusqu'à l'ordre $n+1$; c'est-à-dire
$$\ln(v_{n+1}) = u_{n+1} \text{ et montrons que } \ln(v_{n+2}) = u_{n+2}$$

$$\ln(v_{n+2}) = \ln(\frac{(v_{n+1})^p}{(v_n)^{p-1}}) = p\ln(v_{n+1}) - (p-1)\ln(v_n) = pu_{n+1} - (p-1)u_n = u_{n+2}$$

d'où le résultat donc pour tout n de IN $\ln(v_n) = u_n$

c) puisque
$$\ln(v_n)=\,u_n\,$$
 alors $v_n=\,e^{u_n}=\,e^{\frac{a((p-1)^n-\,1)}{p-2}}$

d).

- Si a = 0 $v_n = 1$ pour tout n de IN ainsi $\lim_{n\to\infty} (v_n) = 1$
- Si $p \in]0$; $1[\cup]1$; 2[on a |p-1| < 1 d'où $\lim_{n \to \infty} (p-1)^n = 0$ ainsi $\lim_{n \to \infty} (v_n) = e^{\frac{a}{2-p}}$
- Si p>2 et a>0, on a p-1>1, d'où $\lim_{n\to\infty}(p-1)^n=+\infty$ ainsi $\lim_{n\to\infty}(v_n)=+\infty$
- Si p > 2 et a < 0 $\lim_{n \to \infty} (v_n) = 0$

Série d'exercices sur les suites réelles

I - Suites et trigonométrie

Exercice n° 1:

Soit x un réel tel que $0 \le x \le \frac{\pi}{2}$.

On considère la suite U définie par $U_0 = \cos x$ et pour tout n de IN*, $U_n = U_{n-1}.\cos \frac{x}{2^n}$

- 1) En utilisant la formule : $\sin 2x = 2\sin x.\cos x$, calculer U_n à l'aide de n, $\sin 2x$ et $\sin \frac{x}{2^n}$
- 2) Déterminer $\lim_{x\,\to\,+\infty}\frac{2^n}{x}.\sin\frac{x}{2^n}.$ En déduire $\lim_{n\,\to\,+\infty}U_n.$

Exercice n°2:

Soit la suite numérique définie par $U_0 \in [0,1]$ et la relation de récurrence :

$$U_{n+1} = \sqrt{\frac{1+U_n}{2}}$$
 pour tout n de IN.

- 1) Montrer que pour tout n de IN, 0 $\,\leq\,$ $U_{n}\,\leq\,$ 1
- Montrer que la suite U est croissante. En déduire qu'elle admet une limite qu'on calculera.
- 3) On pose $U_0 = \cos \alpha$, où $\alpha \in [0, \frac{\pi}{2}]$. Montrer, par récurrence que pour tout n de IN,

$$U_n \equiv cos(\frac{\alpha}{2^n})$$
. (On pourra écrire $cos2x = \frac{2cos^2x-1}{2}$. Retrouver les résultats de 2).

Exercice n°3:

On considère les deux suites de nombres réels U et V définies sur IN* par :

$$U_n = \sin\frac{1}{n^2} + \sin\frac{2}{n^2} + \dots + \sin\frac{n}{n^2}$$

$$V_n = \frac{1}{n^2} + \frac{2}{n^2} + \dots + \frac{n}{n^2}$$

1) Montrer que, pour tout n de IN*,1 + 2 + \cdots + n = $\frac{n(n+1)}{2}$. En déduire $\lim_{n\to +\infty} V_n$

2) a) Montrer que, chacune des trois fonctions de variable réelle :

$$f: x \longrightarrow x - \sin x$$
.

$$g: x \longrightarrow -1 + \frac{x^2}{2} + \cos x$$
.

h: x —
$$-x + \frac{x^3}{6} + \sin x$$
.

ne prend que des valeurs positives ou nulles sur l'intervalle $[0, +\infty[$; on pourra utiliser les variations de chacune des fonctions f, g et h.

- b) Justifier que, pour tout $n\ge 1,\ 1+\ 1^3+\ 2^3+....+n^3\le n^4.$ Déduire de a) $que: V_n-\frac{1}{6n^4}\le \ U_n\ \le \ V_n$
- c) Démontrer que la suite U est convergente et déterminer sa limite.

II - Suites définies par une fonction

Exercice nº 1:

Soit U la suite définie sur IN par : $\begin{cases} U_0 \text{ réel strictement positif} \\ U_{n+1} = \log(1+U_n), n \in IN \end{cases}$

- 1) Tracer, dans un repère orthonormé (0, \vec{i} , \vec{j}), la courbe représentative de la fonction : $x \longrightarrow Log (1 + x)$, ainsi que la droite Δ d'équation : y = x.
- 2) Déterminer graphiquement, la monotonie et la limite éventuelle de la suite U.
- 3) Par le calcul, déterminer :
 - a) La monotonie de la suite U.
 - b) La limite éventuelle de cette suite.

Exercice n°2:

Soit U la suite définie sur IN par : $\begin{cases} U_0 = \frac{1}{2} \\ U_{n+1} = \frac{e^{U_n}}{2 + U_n} \end{cases}$

- 1) Soit f la fonction définie sur [0,1] par $f(x)=\frac{e^x}{2+x}$. Etudier et tracer sa courbe représentative dans un repère orthonormé.
- 2) Etudier graphiquement la convergence de la suite U et sa limite éventuelle.
- 3) L'objectif de cette question est l'étude par le calcul, de la convergence st de la limite éventuelle de la suite U.
 - a) Etablir que l'équation f(x) = x admet une solution unique $l \in [0, 1]$.
 - b) Montrer que, pour $x \in [0, 1]$, $\frac{1}{4} \le f'(x) \le \frac{2}{3}$ (on pourra étudier le sens de variation de f' sur [0, 1])
 - c) Déduire de 3) b) que, pour tout n de IN, $0 \le \frac{U_{n+1}-l}{U_{n-1}} \le \frac{2}{3}$. En déduire que la suite U converge vers l.

III - Suites définies par intégrale

Exercice n° 1:

On considère la suite U définie sur IN par : $U_n = \, \int_0^1 t^n e^{-t} dt.$

- 1) Montrer que, pour tout n, $U_n \ge 0$.
- 2) Montrer que (U_n) est décroissante.
- 3) Montrer que, pour tout n, on a : $\frac{1}{e(n+1)} \le U_n \le \frac{1}{n+1}$. En déduire que (U_n) est convergente et déterminer sa limite.

Exercice nº 2:

Pour tout n de IN, on pose $I_n = \, \int_{n\pi}^{(n+1)\pi} e^{-t} \text{sint dt}$

- 1) Calculer I_n à l'aide de deux intégrations par parties successives.
- 2) Montrer que (I_n) est une suite géométrique dont on déterminera le premier terme et la raison.

- 3) Montre que (In) converge et déterminer sa limite.
- 4) Calculer $\lim_{n \to +\infty} (I_0 + I_1 + \dots + I_n)$.

Exercice n° 3:

Pour tout n de IN, on note f_n : $[0, 1] \longrightarrow IR$, la fonction définie par :

$$\begin{cases} f_n(x) = x^n sin\pi x, & pour \ n \geq 1 \\ f_0(x) = sin\pi x, & pour \ n = 0 \end{cases} \ \ \text{et on pose} \ I_n = \int_0^1 f_n(x) dx$$

- 1) Calculer I_0 et I_1 .
- 2) A l'aide de deux intégrations par parties successives, trouver une relation entre In et I_{n-2} pour $n \ge 2$.
- 3) Calculer I_2 , I_3 et I_4 .
- 4) Montrer que : $0 \le I_n \le \frac{1}{n+1}$, puis déterminer $\lim_{n \to +\infty} I_n$.

Exercice nº 4:

On considère la suite U définie sur IN par : $U_n = 2 \int_0^1 \frac{x^{2n+1}}{1+y^2} dx$

- 1) Montrer que, pour tout n, $U_n \ge 0$.
- 2) Montrer que $U_{n+1} + U_n = \frac{1}{n+1}$
- 3) Calculer U_0 , U_1 et U_2 .
- 4) Montrer que (U_n) est décroissante.
- 5) En déduire que (Un) est convergente et déterminer sa limite.

Exercice n° 5:

On pose, pour tout entier $n \ge 1$, $I_n = \int_1^e x(Logx)^n dx$

- 1) a) Montrer que (I_n) est une suite décroissante.
 - b) Montrer que la suite (I_n) vérifie la relation de récurrence $2I_n+nI_{n-1}=e^2$, $n\,\geq 2$.

- c) Calculer I₁ et I₂.
- 2) Montrer à l'aide de la question précédente, qu'on a : $\frac{e^2}{n+3} \le I_n \le \frac{e^2}{n+2}$. En déduire la limite de la suite (nI_n) lorsque n tend vers l'infini.

Bonne révision