Afli Ahmed

. Ibn Khaldoun Jammel

Série d'exercices n°: 19

Coniques

Exercice 1:

Le plan étant rapporté à un repère orthonormé $(O, \vec{\iota}, \vec{j})$. Soit \mathcal{H} l'hyperbole d'équation

 $x^2 - 4y^2 = 1$. Déterminer les équations des asymptotes de \mathcal{H} et tracer \mathcal{H} .

Exercice2

On considère dans \mathbb{C} l'équation : (E_t) : $z^2 + (1-t^2-2it)z + t^2 - 2 + 2it = 0$ (t est un paramètre réel)

- 1.) Résoudre (E_t) dans \mathbb{C}
- 2.) M est l'image de la solution non réelle de (E_t)
 - a. Montrer que M varie sur une parabole P.
 - b. Construire P.

Exercice 3:

Le plan étant rapporté à un repère orthonormé (O, \vec{t} , \vec{j}). Soit f la similitude directe de centre A(0,1), de rapport $\sqrt{2}$ et d'angle $\frac{\pi}{4}$.

- 1) Déterminer la forme complexe de f.
- 2) Une courbe (C) a pour équation $x^2 + y^2 2xy + x 3y = 0$
- a) Déterminer une équation cartésienne de (C') image de (C) par f.
- b) En déduire que (C') est une parabole que l'on caractérisera. Tracer (C').
- 3) Déterminer alors la nature de la courbe (C).

Exercice 4:

- 1) Soit $\mathcal{E} = \{M(x,y) \in P; x^2 + 4y^2 = 1\}$. Donner les éléments caractéristiques de \mathcal{E} .
- 2) Soit D et D' les droites d'équations respectives x=1 et x=-1 et $F(\frac{\sqrt{3}}{2},0)$. Soit $M_0(\cos(\theta),\frac{1}{2}\sin(\theta))$ un point de P, avec $\theta \in IR \setminus \{k\pi : k \in \mathbb{Z}\}$.
- a) Vérifier que M_0 appartient à \mathcal{E} .
- b) Ecrire une équation de la tangente T à \mathcal{E} au point M_0 .
- c) T coupe D et D' respectivement en K et K'.

 Montrer que le triangle KFK' est rectangle en F.

Exercice 5: (Bac)

Le plan étant rapporté à un repère orthonormé $(0, \vec{\iota}, \vec{j})$.

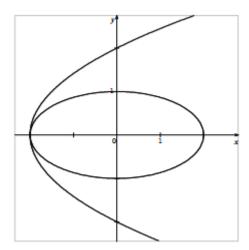
1) a) Soit (E) l'ellipse d'équation : $\frac{x^2}{4} + y^2 = 1$

Déterminer les coordonnées des foyers de l'ellipse (E) et donner son excentricité.

b) Soit (P) la parbole d'équation $y^2 = 2x + 4$.

Déterminer les coordonnées du foyer F de la parabole (P) et donner une équation de sa directrice.

- 2) Dans l'annexe ci-jointe, on a tracé dans un repère orthonormé $(O, \vec{\iota}, \vec{j})$ l'ellipse (E) et la parabole (P).
- Soit (Γ) la courbe d'équation $y^2 = -2|x| + 4$
 - a) Vérifier que (O, \vec{j}) est un axe de symétrie de (Γ) .
 - b) Tracer (Γ) dans le repère (O, $\vec{\iota}$, $\vec{\jmath}$).
- 3) a) Soit (C) le cercle d'équation : $x^2 + y^2 = 4$ Vérifier que pour tout réel t de [0,2], le point M(t, $\sqrt{4-t^2}$) appartient à (C).
- b) On pose $I_1=\int_0^2 \sqrt{4-\mathsf{t}^2}\,\mathsf{dt}.$ Montrer que $I_1=\pi$
- 4) Calculer $I_2 = \int_0^2 \sqrt{-2t + 4} \, dt$.
- 5) Soit \mathcal{A} l'aire de la partie du plan limitée par la courbe (Γ) et l'ellipse (E). Exprimer \mathcal{A} en fonction de I_1 et I_2 puis calculer \mathcal{A} .



Exercice 6:

On considère l'hyperbole \mathcal{H} d'équation : $x^2 - \frac{y^2}{4} = 1$ et soit le point $M\left(\frac{1}{\cos\alpha}; 2\tan\alpha\right)$; $\alpha \in \left]0$; $\frac{\pi}{2}\right[$.

- 1) a) Déterminer, par leurs coordonnées les sommets et les foyers de H.
 - **b)** Donner les équations cartésiennes des deux asymptotes Δ_1 et Δ_2 de \mathcal{H} .
 - c) Tracer ₹£.
 - **d)** Vérifier que le point $M \in \mathcal{H}$.
- 2) Soit T_M la tangente à \mathcal{H} en M. Montrer qu'une équation de T_M est : $2x-y\sin\alpha-2\cos\alpha=0$.
- 3) On désigne par P_1 et P_2 les points d'intersection de T_M respectivement avec les droites Δ_1 et Δ_2
 - a) Donner les coordonnées des points ${\cal P}_1$ et ${\cal P}_2$
 - **b)** Montrer que l'aire du triangle OP_1P_2 est indépendant de α .

Exercice 7:

Le plan P est muni d'un repère orthonormé $R = (O, \overrightarrow{i}, \overrightarrow{j})$.

1/ Soit l'ensemble
$$(E): y^2 = \frac{9}{4}(4 - x^2)$$

- **a** Déterminer la nature de (E).
- **b** Préciser les sommets de (*E*) puis le construire dans *R*.

2/ Soit
$$G: [0; \pi] \to IR; x \mapsto G(x) = \int_0^{2\cos x} \sqrt{4 - t^2} dt.$$

a- Calculer
$$G\left(\frac{\pi}{2}\right)$$
 et montrer que $\forall x \in [0; \pi]; G'(x) = -4\sin^2 x$

- **b** En déduire l'expression de G(x) en fonction de x.
- 3/a- Hacher sur votre figure la partie (D) du plan limitée par (E) et les

demi droites d'équation respectives
$$\left\{ \begin{array}{ll} x=0 \\ y\geqslant 0 \end{array} \right. \text{ et } \left\{ \begin{array}{ll} y=0 \\ x\geqslant 0 \end{array} \right.$$

b- A l'aide de G calculer A(D) l'aire de D.

Exercice 8:

Le plan est muni d'un repère orthonormé $\left(O,\vec{i},\vec{j}\right)$. Soit fl'application du plan dan lui-même qui à tout point d'affixe z associe le point M' d'affixe z' telle que $z' = \sqrt{2}\left(1+i\right)\overline{z}$

- 1) Montrer que f est une similitude indirecte dont on précisera son centre, son rapport et son axe.
- 2) Soit un point M(x,y) et M'(x',y') son image par f. Vérifier que $\begin{cases} x' = \sqrt{2}(x+y) \\ y' = \sqrt{2}(x-y) \end{cases}$
- 3) Une courbe C a pour image par f la courbe C d'équation : $5 \times 1^2 + 5 \times 1^2 + 6 \times 1 \times 1 + 6 \times 1 = 0$ a/ Déterminer une équation de C
 - b/ En déduire que *C* est une ellipse dont on précisera son centre, ses foyers , ses sommets son excentricité et ses directrices.
 - c/En déduire la nature et les éléments caractéristiques de la courbe C'

Exercice 9:

Soit S l'application du plan dans lui même qui à tout point M d'affixe z associe le point M' d'affixe z' = (1 - i)z + i.

- 1) Montrer que *S* est une similitude directe de centre I(1,0), de rapport $\sqrt{2}$ et d'angle $-\frac{\pi}{4}$
- 2) Soit la courbe (C) dont une équation est : $x^2 + 2xy + y^2 + 8x + 4y + 7 = 0$
 - a) Déterminer une équation de la courbe (C') image de (C) par S.
 - b) En déduire que (C') est une parabole dont on précisera le sommet, le foyer et la directrice.
 - c) Construire (C').
- 3) En déduire la nature de (C) et la construire.

