## Les solutions acides

# Exercice 1

On dissout un volume  $V_g$  de chlorure d'hydrogène HCI (gaz) dans l'eau pure afin d'obtenir une solution aqueuse (S) de volume  $V = 200 \text{cm}^3$  et de concentration  $C = 0.2 \text{molL}^{-1}$ .

- 1) Ecrire l'équation d'ionisation de HCl.
- 2) Calculer le volume  $V_g$  mesuré dans les conditions ou le volume molaire  $V_m = 24 Lmol^{-1}$ .
- 3) A un volume  $V_0 = 50 \text{cm}^3$  de la solution (S) on ajoute 5g de carbonate de calcium (CaCO<sub>3</sub>).
- a- Décrire la réaction chimique qui se produit.
  - b- Ecrire l'équation de la réaction chimique.
  - c- Déterminer le réactif en excès.
  - d- Calculer le volume du gaz formé.
  - e- Calculer la masse du produit formé.

On donne  $M(C) = 12 \text{ g.mol}^{-1} M(O) = \text{g.mol}^{-1} \text{ et } M(Ca) = \text{g.mol}^{-1}$ 

# Exercice 2

On dissout un volume V d'iodure d'hydrogène gazeux HI(acide fort) dans l'eau.

- 1° Ecrire l'équation de la réaction qui correspond à la dissociation de HI.
- 2° la concentration de cette solution en ions H<sub>3</sub>O<sup>+</sup> est égale 0,01mol L<sup>-1</sup>.
  - a) Déduire la concentration C de la solution (S) obtenue.
  - b) Quel volume de HI gazeux a-t-il fallu dissoudre pour préparer 5L de solution .On donne le volume molaire  $V_m = 24 L mol^{-1}$ .
  - c) Quel volume d'eau faut-il ajouter a 10 ml de la solution (S) pour obtenir une solution (S') de concentration C'=0,005 molL<sup>-1</sup>.
  - d) A la solution S' on ajoute quelques gouttes de B.B.T quelle couleur observe t on?
  - 3- On fait réagir 2,8 g de fer avec 100 mL de la solution S.
  - a- Décrire la réaction qui se produit.
- b- Déterminer le volume de gaz dégagé. On donne M(Fe) = 56 g.mol<sup>-1</sup>.
  - c- Calculer la masse du produit formé.

## Exercice 3

On considère deux solutions  $S_1$  et  $S_2$  de même concentration molaire C=0,1 mol. $L^{-1}$ , l'une de chlorure d'hydrogène HCl (acide fort) et l'autre d'acide éthanoïque  $CH_3COOH$  (acide faible). A l'aide d'un pH- mètre on mesure le pH de chaque solution on trouve :  $[H_3O^+]$  ( $S_1$ )= 0,1 mol. $L^{-1}$  et  $[H_3O^+]$  ( $S_2$ )= 0,001 mol. $L^{-1}$ 

- 1) Qu'appelle t- on acide fort ?
- 2) a) Dire en justifiant laquelle parmi les deux solutions correspond a la solution aqueuse de chlorure d'hydrogène.
  - b) Quel volume d'eau pure faut-il ajouter a 50 mL de la solution précédente de chlorure d'hydrogène afin d'obtenir une nouvelle solution de concentration en ions H<sub>3</sub>O<sup>+</sup> égale à 0,1 mol.L<sup>-</sup>
- 3) Ecrire l'équation d'ionisation de l'acide éthanoïque dans l'eau . Quelles sont les espèces chimiques présentes en solution.

### Dosage acide -base

### Exercice 1:

On dispose de deux solutions aqueuses : SA et SB . L'une d'une solution d'acide nitrique HNO3 ( acide fort) et l'autre d'une solution d'hydroxyde de potassium KOH (base forte). La solution SA a un pH inconnu et la solution SB a un pH=12.

1) Faire un schéma annoté du dispositif du dosage.



- 2) On prélève un volume  $VB = 20 \, \text{mL}$  de la solution SB qu'on introduit dans un bécher à laquelle on ajoute quelques gouttes de BBT puis à l'aide d'une burette graduée on verse goutte à goutte la solution SA dans le bécher. Lorsque la couleur verte du BBT apparaît on a versé un volume  $VA = 40 \, \text{mL}$ .
- a) Définir l'équivalence acido-basique.
- b) Ecrire l'équation de la réaction acide -base.
- c) Déterminer la concentration CA de l'acide. En déduire son pH. On donne 10-0,3 = 0,5
- b) Quelles sont les espèces chimiques présentes dans le mélange à l'équivalence. Calculer leurs concentrations. En déduire le pH de la solution à l'équivalence.

### Exercice 2:

On prépare deux solutions S1 et S2 de même concentration molaire C; l'une de chlorure d'hydrogène HCl (acide fort), l'autre d'acide éthanoïque CH3 COOH(acide faible).

On mesure à l'aide d'un ph-mètre, le pH de chaque solution ,on trouve : PH(S1) = 2 et pH(S2) = 3,4.

- 1-A partir de ces résultats , dire en justifiant laquelle parmi les deux solutions qui correspond à la solution de chlorure d'hydrogène.
- 2)En déduire la concentration C de chaque solution .
- 3)Quel volume de chlorure d'hydrogène gazeux faut-il dissoudre dans 500mL d'eau pure a fin d'obtenir la solution demandée. On prendra Vm=24 Lmol-1.
- 4)A un volume Va=20mL de la solution S1 de pH=2 contenant quelques gouttes de BBT, on ajoute progressivement à l'aide d'une burette graduée une solution aqueuse d'hydroxyde de sodium de concentration Cb jusqu'a l'équivalence acido-basique. Le BBT vire au vert pour un volume versé Vb = 40 Cm3 de la solution basique.
- a- Décrire le protocole expérimental. Quel est le rôle du BBT ?
- b- Ecrire l'équation de la réaction qui se déroule au cours du dosage.
- b- Qu'appelle -t- on équivalence acido-basique ?
- c- Calculer Cb. Quel est son pH?
- d) Calculer le pH et la masse du sel formé. On donne M(NaCl)=58.5gmol-1

# Les acides et les bases- Notion de pH

## Exercice 1:

5 flacons contiennent un même volume V de solutions aqueuses différentes mais de même concentration molaire C = 0,01 mol L-1. Pour identifier le nom de la solution continue dans chaque flacon on mesure le pH en numérotant le flacon correspondant :

|              |    | 1    |     |   |   |
|--------------|----|------|-----|---|---|
| N° du flacon | 1  | 2    | 3   | 4 | 5 |
| На           | 12 | 10.6 | 3.4 | 7 | 2 |

Chaque solution a été préparée par dissolution dans l'eau pure l'un des produits suivants : soit l'hydroxyde de potassium, KOH ( base forte )

soit du chlorure de sodium, NaCl. (sel)

Soit de l'ammoniac, NH3 (base faible)

Soit d'acide éthanoïque CH3COOH, (acide faible)

Soit d'acide nitirque HNO3, (acide fort)

- 1- Identifier en justifiant les réponses, le nom de la solution contenue dans chaque flacon.
- 2- Ecrire l'équation de la réaction qui se produit dans les flacons (2) et(3).

#### Exercice 2:

N.B: toutes les solutions sont considérées à 25°C où [H3O+] [OH-] = 10-14

- 1- Qu'appelle-t-on base forte?
- 2- On prépare une solution d'hydroxyde de sodium NaOH (base forte) en faisant dissoudre une masse m de NaOH dans l'eau pure de façon à obtenir 2L de solution S.
- a- Ecrire l'équation de la dissolution du solide dans l'eau.
- b- Quelles sont les entités chimiques présentes dans la solution ?
- c- comment peut-on mettre en évidence expérimentalement le caractère basique de la solution.



d- A l'aide d'un pH-mètre on mesure le pH de la solution, on trouve pH = 11

Calculer la concentration molaire de toutes les entités chimiques présentes en solution.

e- Quelle est la concentration molaire C de la solution. Calculer alors m.

On donne : M(Na) = 23 g mol-1; M(O) = 16 g mol-1; M(H) = 1 g mol-1

3- A partir de la solution précédente, on veut obtenir un litre d'une solution S' d'hydroxyde de sodium de pH = 10 et de concentration C'.

a- Calculer la concentration molaire C' de la solution S'.

b- Indiquer d'une façon précise comment doit-on opérer pour préparer la solution S'.

Exercice 3:

on donne [H+].[OH-]=10-14 à 25°C

Deux solutions notées S1, S2 de même concentration molaire C placées respectivement dans deux béchers. on donne les concentrations des ions OH- pour chaque solution :

| solution      | S1   | S2    |
|---------------|------|-------|
| [OH-](molL-1) | 10-2 | 10-12 |

1/calculer le pH de chaque solution .Dire en justifiant quel est le caractère de chacune (acide, basique ou neutre) ?

2/a/L'une des deux solutions correspond à une solution aqueuse d'hydroxyde de sodium NaOH (base forte). Quel est alors son pH ?

b/ La concentration des ions Na+ de la solution d'hydroxyde de sodium est égale à 0.01molL-1 En déduire la concentration C de la solution.

c/ Calculer la masse m d'hydroxyde de sodium que l'on doit dissoudre pour préparer 500mL de cette solution. On donne M(Na)=23gmol-1; M(O)=16gmol-1; M(H)=1gmol-1

Exercice 4:

On dissout un volume Vq d'iodure d'hydrogène gazeux HI dans l'eau pure.

1°) la concentration de la solution (S) obtenue est égale 0,01mol L-1.

Quel volume de HI gazeux a-t-il fallu dissoudre pour préparer 500mL de solution .On donne le volume molaire Vm=24Lmol-1.

A l'aide d'un pH-mètre, on mesure le pH de la solution, on trouve pH=2.

Calculer la concentration des ions H3O+.

Dire en justifiant si l'iodure d'hydrogène est un acide fort ou faible.

- 2°) Ecrire l'équation chimique de la réaction d'ionisation de HI.
- 3°)On ajoute 90mL d'eau pure à 10mL de la solution précédente.

Calculer la nouvelle concentration C' de la solution S'.

Quel est alors son pH?