LS secondaire EL Alia

Prof: Tlich Ahmed

<u>Devoir de contrôle n°2</u> (Bac Science1 et 2) AS: 2015/2016

Durée: 2h

Exercice $n^{\circ}1$: (3 points)

Choisir l'unique bonne réponse et sans justification.

1) l'espace est muni d'un repère orthonormé.

L'ensemble des points M de l'espace vérifient : $\overrightarrow{MA.MB} = 0$ est

- a) une droite
- b) un plan
- c) une sphère

2)
$$\int_{1}^{0} \sqrt{x^4 + 3} \, dx$$
 est:

- a) négatif
- b) positif
- 3) Soit F une primitive de la fonction f définie sur IR par $f(x) = \frac{1}{1+x^2}$ alors la fonction définie sur

$$\left] \frac{-\pi}{2}, \frac{\pi}{2} \right[\text{ par } G(x) = F(tgx) \text{ est dérivable et on a :}$$

a)
$$G'(x) = 1 + tg^2 x$$

b) G'(x) =
$$\frac{1}{1 + tg^2 x}$$
 c) G'(x) =1

Exercice n°2: (6 points)

L'espace est muni d'un repère orthonormé $(0, \vec{i}, \vec{j}, \vec{k})$.

On considère les points A(-2,2,1), B(-2,1,1), C(0,-1,3) et I(1,1,2).

- 1) a) Montrer que les points A, B et C déterminent un plan noté P.
 - b) Montrer qu'une équation cartésienne du plan P: x z + 3 = 0.
- 2)a) Montrer que les points O, A, B et C ne sont pas coplanaires.
 - b) Calculer le volume du tétraèdre OABC.
- 3) Soit la sphère d'équation : $x^2 + y^2 + z^2 2x 2y 4z + 3 = 0$
- a) Montrer que S est la sphère de centre I et de rayon $\sqrt{3}$.
- b) Déduire que S et P sont sécantes en un cercle dont on précisera le centre H et le rayon.
- 4) Soit le plan Q : $x + z + \sqrt{6} 3 = 0$
- a)Montrer que P et Q sont perpendiculaires.
- b) Montrer que S et Q sont tangents puis déterminer les coordonnés de leurs point de contact E.

Exercice n°3: (5 points)

Soit la fonction définie sur]-1,+ ∞ [par f(x)= $x - \frac{1}{\sqrt{x+1}}$ et soit (C_f)sa courbe représentative dans

un repère orthonormé.

- 1) a) Etudier les variations f.
 - b) Montrer que l'équation f(x) = 0 admet dans]-1,+ ∞ [une unique solution α .
 - c) Vérifier que $0 \prec \alpha \prec 1$
 - d) Monter que la droite D : y=x est une asymptotes oblique à $(C_{\rm f})$ au voisinage de $+\infty.$
 - e) Construire (C_f).
- 2) a) Montrer que f réalise une bijection de]-1,+∞[sur un intervalle J que l'on déterminera.
 - b) Construire dans le même repère la courbe de f⁻¹.
- 3) Calculer l'aire A de la partie du plan limitée par (C_f) , la droite D et les droites d'équations x = 0 et x = 2
- 4) Calculer en fonction de α l'aire de la partie du plan limitée par les courbes de f , f ⁻¹ et les droites d'équations x = 0 et x = 2 et y = 2.

Exercice n°3: (6 points)

Soit la suite définie sur IN par $I_n = \int_0^1 \frac{x^n}{\sqrt{x^2 + 1}} dx$

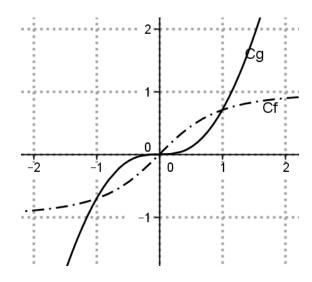
- 1) a) Montrer que (I_n) est décroissante.
 - b) Montrer que (I_n) est positive et déduire quelle est convergente.

c) Monter que
$$0 \le \frac{x^n}{\sqrt{x^2 + 1}} \le x^n$$
 puis déduire que $0 \le I_n \le \frac{1}{n+1}$. Calculer $\lim_{n \to +\infty} I_n$

- 2) a) Calculer I_{1.}
 - b) Par une intégration par partie montrer que : $I_3 = \frac{2 \sqrt{2}}{3}$
- 3) Dans la figure ci dessous on a représenter dans un repère orthonormé les fonctions définies sue

IR par
$$f(x) = \frac{x}{\sqrt{x^2 + 1}}$$
 et $g(x) = \frac{x^3}{\sqrt{x^2 + 1}}$.

- a) Vérifier que g est impaire puis calculer $\,A\,l$ 'aire de la partie du plan limitée par $\,C_g\,$, l'axe des abscisses et les droites d'équation $\,x=-1$ et $\,x=1\,$
- b) Calculer l'aire B du plan limitée par C_f , C_g et les droites d'équation x=0 et x=1.



Bon travail