Lycée Ibn Khaldoun Ousseltia		Devoir de contrôle n°2	Prof : Mr Abdaoui Hammadi
Date: 12/02/2013	Durée :2h	(Sciences Physiques)	Classes : 4 ^{ème} Sc.Expert ₁₊₂

Chimie: (9Pts)

Exercice n° 1: (5pts)

Toutes les solutions sont prises à **25°C**, température à laquelle le produit ionique de l'eau est **Ke=10⁻¹⁴**. On néglige les ions provenant de l'ionisation propre de l'eau.

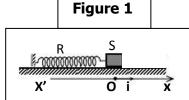
En dissolvant chacun des trois acides A_1H , A_2H et A_3H dans l'eau pure, on prépare respectivement trois solutions aqueuses acides (S_1) , (S_2) et (S_3) de même concentration C. L'un des acides est fort, alors que les deux autres sont faibles.

La mesure des **pH** des trois solutions fournit le tableau suivant :

Solutions	(S ₁)	(S ₂)	(S ₃)
рН	2,55	1,3	3,05

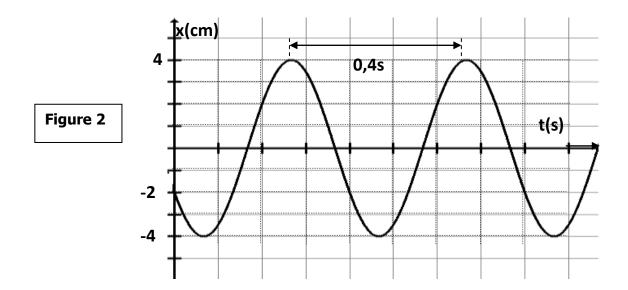
- 1) Classer les acides A₁H, A₂H et A₃H par ordre de force croissant. En déduire l'acide fort.
- 2) Rappeler l'expression du pH d'un acide fort. Déterminer alors la valeur de C.
- 3) a- Dresser le tableau descriptif d'avancement volumique de la réaction de tout acide faible AH avec l'eau. On désigne par y l'avancement volumique de la réaction
 - **b-** Montrer que la constante d'acidité **Ka** de tout acide faible **AH** peut s'écrire sous la forme : $\mathbf{T}_{F} = \mathbf{T}_{F} = \mathbf{T}_{F}$
 - $Ka = \frac{10^{-pH} \cdot \tau_F}{1 \tau_F}$, ou τ_F désigne le taux d'avancement volumique final de la réaction
 - c- Montrer, tout en justifiant les approximations utilisées, que pour un acide faible :
 pKa= 2pH + logC
- 4) Comparer les pKa des deux acides faibles et déduire celui qui est le plus fort.
- **5)** On réalise la dilution au **1/10** de chacune des solutions précédentes. On obtient des nouvelles solutions (**S**′₁), (**S**′₂) et (**S**′₃)
 - **a-** Calculer le nouveau **pH** de chaque solution.
 - **b-** Comparer le au_F de l'acide $extbf{A}_2 extbf{H}$ avant et après la dilution. Conclure.

Exercice n° 2 : (4pts)


Un système chimique contient en solution aqueuse de l'acide hypochloreux **HOCI**, de l'hydroxylamine $\mathbf{NH_2OH}$, des ions hypochloreux \mathbf{CIO}^- et des ions hydroxylammonium $\mathbf{NH_3OH}^+$. Il peut être le siège de la réaction d'équation : $\mathbf{HOCl}_{(aq)} + \mathbf{NH_2OH}_{(aq)} \longrightarrow \mathbf{CIO}^-_{(aq)} + \mathbf{NH_3OH}^+_{(aq)}$ La constante d'équilibre relative a cette réaction est $\mathbf{K} = \mathbf{4.10}^{-2}$

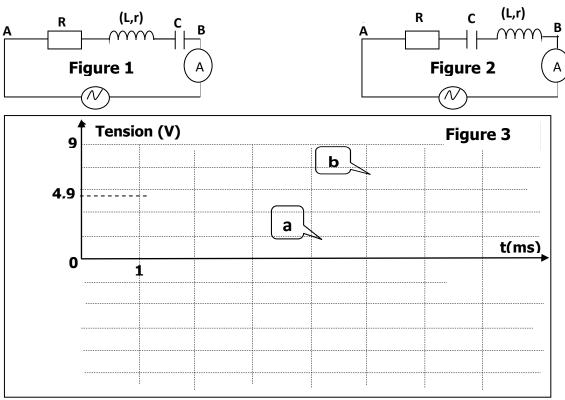
- 1) Exprimer la fonction des concentrations relative à cette réaction.
- 2) Sachant que, le volume total du système est V= 100 mL et que les concentrations initiales des différentes espèces sont :[HOCl]=10⁻¹ mol.L⁻¹ ; [ClO-]=10⁻² mol.L⁻¹ ; [NH₂OH]=10⁻¹ mol.L⁻¹ ; [NH₃OH +] = 10⁻² mol.L⁻¹
- **a-** Calculer la fonction des concentrations π .
- **b-** En déduire le sens d'évolution spontané du système.
- c- Etablir le tableau d'avancement de la réaction en fonction de x.
- **d-** Exprimer **K** en fonction de l'avancement final **x**_f de la réaction.
- e- Calculer l'avancement final de la réaction.
- **f-** En déduire la composition molaire du système lorsque l'équilibre dynamique est atteint.

Physique: (11Pts)


Exercice n° 1: (5pts)

Un pendule élastique est constitué d'un solide de centre d'inertie **G** de masse **m**, attaché à un ressort à spires

non jointives, de raideur $K=20N.m^{-1}$. L'autre extrémité du ressort est fixe. Le pendule est placé sur un plan horizontal. L'abscisse \mathbf{x} du centre d'inerție \mathbf{G} du solide est repérée sur un axe $\mathbf{x}'\mathbf{x}$. A l'équilibre, \mathbf{G} coıncide avec l'origine du repère $\mathbf{R}(\mathbf{O},\mathbf{I})$ (figure 1). On néglige tout type de frottements. On écarte le solide d'une distance \mathbf{X}_m et on le lâché sans vitesse initiale.


- 1) a- Etablir l'équation différentielle du mouvement du solide.
 - **b-** Donner les expressions littérales, de la pulsation propre, de la période propre et de la fréquence propre des oscillations en fonction de **m** et **K**.
- 2) L'enregistrement graphique de l'élongation **x** en fonction du temps a permis de tracer la courbe de la <u>figure 2</u>
 - **a-** Justifier que la nature du mouvement du centre d'inertie G du solide S est rectiligne sinusoïdal.
 - b- Les oscillations du pendule élastique sont dites libres non amorties. Pourquoi?
 - **c-** Quel est le régime de fonctionnement ?
 - **d-** Déterminer : l'amplitude, la période, la fréquence propre des oscillations et la phase initiale de l'élongation x.
- 3) a- Ecrire l'équation horaire du mouvement **x(t)** du solide en déduire celle de la vitesse **v(t)**.
 - **b-** Quel est le déphasage entre ses deux grandeurs ?
- 4) En déduire la valeur de la masse m du solide.
- 5) a- Calculer la valeur de l'énergie potentielle élastique du ressort à l'instant 0,4s.
 - **b-** Quelle est la valeur de l'énergie cinétique du solide à cet instant ?
 - **c-** Montrer que l'énergie totale du pendule élastique est constante et déterminer sa valeur.

Exercice n°2: (6pts)

Une portion d'un circuit AB contient, disposés en série, un résistor de résistance \mathbf{R} , un condensateur de capacité $\mathbf{C=5\mu F}$ et une bobine d'inductance \mathbf{L} et de résistance \mathbf{r} . Entre A et B, on applique une tension alternative sinusoïdale $\mathbf{u(t)=U_m.sin(2\pi Nt+\phi_u)}$ d'amplitude \mathbf{Um} constante et de fréquence \mathbf{N} réglable. Pour une fréquence $\mathbf{N=N_1}$, on visualise, à l'aide d'un oscilloscope bicourbe, les tensions $\mathbf{u_c(t)}$ aux bornes du condensateur et $\mathbf{u(t)}$ aux bornes du circuit AB, respectivement sur ses voies $\mathbf{Y_1}$ et $\mathbf{Y_2}$. On obtient les oscillogrammes de la **figure 3**

1) Parmi les deux schémas, **figure 1** ou **figure 2**, reproduire sur votre copie celui qui permet d'obtenir l'oscillogramme de la **figure 3** en indiquant les branchements convenables à l'oscilloscope.

- 2) Sachant que toute variation de la fréquence N n'influe pas sur le siège du déphasage de u(t) par rapport à $u_c(t)$
 - a- Identifier les deux courbes (a) et (b)
 - **b** A partir des oscillogrammes, déterminer :
 - **b1/** La valeur de la fréquence N₁
 - **b2/** Les valeurs des amplitudes \boldsymbol{U}_m et \boldsymbol{U}_{cm}
 - **b3/** Le déphasage $\Delta oldsymbol{arphi} = oldsymbol{arphi} uc oldsymbol{arphi} u$
 - c- En déduire la nature du circuit.
- **3) a** Faite la représentation de Fresnel
 - **b-** Montrer que $R+r=\frac{Um}{Ucm}$. $\frac{1}{2\pi.N1.C.\sqrt{2}}$, Calculer la valeur de **(R+r)**
 - **c-** Calculer la valeur de l'inductance **L**
- **4)** On branche un voltmètre aux bornes de l'ensemble {bobine-condensateur} et on augmente la fréquence **N** jusqu'à la valeur **N**₂=318Hz. On constate que **u(t)** et **u**_c(**t)** deviennent en quadrature de phase et que le voltmètre indique une tension $U_1 = \frac{0.9}{\sqrt{2}}$ **V**
 - a- Montrer que circuit est le siège d'une résonnance d'intensité.
 - **b-** Déterminer la valeur de **L**.
 - **c-** Déterminer la valeur de **r**. En déduire celle de **R**.